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SOA formation in 
the aqueous phase (aqSOA)

…of cloud droplets

Parameterization of SOA formation from glyoxal

…of aqueous (deliquesced) particles    

- Derivation of individual rate constants based on lab studies
- Quantifying differences to cloud chemistry

First model studies
Comparison of cloud- and particle-SOA



Evidence in current models of ‘missing SOA’

Model – Observations 
Models
AMS

Hodzic et al., 
ACP, 2010

Fast et al, 
ACP, 2007

RH

 Correlation of highly oxidized aerosol (O/C) and RH!

‘Traditional SOA’
0.02 < O/C < 0.8 

aqSOA from glyoxal 1 < O/C <  2
aqSOA from methylglyoxal 0.4 < O/C <  1



I. Cloud chemistry
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• Oxidation by OH

• Acid formation

• Formation and loss are pH 
dependent 

• T and pH dependencies for 
all rate constants are 
known

Liquid water content ~ 0.1-1 g m-3

Lifetime of cloud droplet ~ minutes
Solute concentration µM - mM
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Simplification of cloud chemistry: 
aqSOA formation from glyoxal 

Gas phase concentrations

Reaction parameter

Bulk  liquid water content

Factor: - Deviation from thermodynamic equilibrium   [Gly]aq = KH
Gly ·[Gly]gas

[OH]aq = KH
Gly ·[OH]gas

- Loss processes Oxalic acid/Oxalate  + OH  CO2

· Factor

‘Theory’

LWC·[OH]·[Gly]·k
dt

d[SOA]
gasgasoverall=



~100,000 box model simulations using ‘detailed cloud chemistry’

0.01 ppb ≤ [Gly]gas ≤ 1 ppb

104 cm-3 ≤ [OH]gas ≤ 7·106 cm-3

0.01 g m-3 ≤ LWC ≤ 1.5 g m-3

275 K ≤ T ≤ 300 K

2 ≤ pH ≤ 6.5

How to derive the empirical ‘factor’ ? 
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‘Model rate’
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Resulting parameterization

Deviation from ‘ideal behavior’ (1:1) scales with 

- glyoxal concentration 

- temperature  (KH) 

- pH (oxalate loss)

OH consumption 
 ≠ [OH]aq (equil)

Factor = a1 +a2 [y(pH)+A(pH)· exp(C(pH)·[Gly]gas)] +a3·T+a4[Gly]gas

Coefficients: a1, a2, a3, a4, y(pH), A(pH), C(pH)

± ~30%



II. SOA formation in aqueous particles
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Complex  mechanism:

• Surface and bulk processes

• Reversible and irreversible

• Photochemistry/ dark 
chemistry

• Solute (activity) dependent

• Oligomerization  (Products?)

Ervens and Volkamer, ACP, 2010

LWC ~ 10-6  – 10-4 g m-3

Particle lifetime ~ days
Solute concentration  ~M

Glyoxal



Ervens and Volkamer, ACP, 2010

Laboratory studies

Glyoxal uptake on aqueous aerosol 
(different seed composition), in the 
presence of OH/hν

Volkamer et al., ACP, 2009

Model studies
Simulations of chamber conditions
Assumed ‘cloud chemistry’

OH(aq) + Glyoxal(aq)  SOA

Cloud chemistry reaction 

scheme underestimates 

photochemical SOA formation 

by more than two orders of 

magnitude!

Additional photochemical process(es)

Glyoxal  SOA  with 0.8 s-1 < kphotochem < 7 s-1

can account for the discrepancy

kphotochem = f(particle composition, hygroscopicity)

Quantifying chemical differences between 
cloud and particle chemistry



Model simulations: Cloud vs particle SOA

Parcel model

Cloud SOA 
(oxalic,  glyoxylic, glycolic,  pyruvic acid):

– ~1 µg m-3 after 3 hours (f(LWC, time))
– Sink: Oxidation and evaporation

Particle SOA
Oligomers, org. N-compounds
Steady increase (no sink – correct?)
– Several µg m-3 after a few hours

SOA formation in clouds and aqueous 
particles about equally efficient 

Model results: 2.5 h < time < 3.5 h

‘cloud’‘aerosol’

Prescribed RH, liquid water content, 
temperature, pressure…



• Aqueous phase chemistry is important for the SOA budget (mass, O/C)

• Cloud droplets/ aqueous particles = different aqueous phases

Parameterization of in-cloud aqSOA formation as f([Gly]gas, pH, T)

Kinetic data for particle-aqSOA based on laboratory studies

- Application of process model (e.g., MCMA-2003; CARES; CalNex…)

- Lab studies to extent parameter space (pH, seed, species…)

SOA formation from glyoxal in cloud droplets and particles might yield

similar amounts of highly oxidized aqSOA mass (O/C > 1)

Conclusions


	New model developments of �SOA formation in the aqueous phase��Chemical processes in �cloud droplets vs aqueous particles 
	�SOA formation in �the aqueous phase (aqSOA)
	Evidence in current models of ‘missing SOA’
	I. Cloud chemistry
	Simplification of cloud chemistry: �aqSOA formation from glyoxal 
	How to derive the empirical ‘factor’ ? 
	Resulting parameterization
	II. SOA formation in aqueous particles
	Quantifying chemical differences between cloud and particle chemistry
	Model simulations: Cloud vs particle SOA
	Conclusions

