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1) Most frequent cloud type: ~70% of Arctic =~ |, ———-
boundary layer clouds are mixed-phase. E 'l =

2) Strong radiative effects on sea ice and = Eg
snow-covered surface. 0

3) The cloud mass phase partition is 5 2
important factor for cloud life time. £ ol

4)From our model comparison study, phase
partition of the Arctic Mixed-phase clouds is
poorly represented by the ECMWF model
(Zhao and Wang, 2010).
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2. Data

f) Clouds: (1999 to 2008 at the NSA Barrow site)
Instruments: MMCR, MPL, MWR, and SONDE.
Microphysical properties

Based on a new multiple sensor (MWR+MPL+ MMCR) approach
(Wang, 2007):

MPL+MMCR —>ice water content and general effective radius
profiles for ice phase.
MWR+MPL+ adiabatic cloud model = LWP and cloud effective

radius for water phase.

2) Aerosol:

ARM MPL polarized data -> Aerosol depolarization ratio
ARM Aerosol Observing System (AOS) - CCN

NOAA GMD Aerosol Data > Extinction coefficient from
Nephelometers



3. Temperature influence T
AL 77777\\%7 7 o
1  LWF as a function of cloud top temperature

Klein et al. 2009: multi-model inter-comparison study on
stratiform mixed-phase cloud simulations
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e Observed LWFs are noticeably different from model simulations.
e Observed LWF in spring is lower than in the other seasons

when cloud top temp colder -15 °C.



4. Aerosol influence
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LWP decreases with increase of aerosol loading.
IWP slightly increases with increase of aerosol loading.

LWF transits from a high value state to a slight low value
state within the log(ext. coeff.) range of between -5.8 and -

53



2) Seasonal variation of aerosol depolarization ratio — =
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°Wlsare effective heterogeneous ——+ 0‘85' —
: ice nuclei. lﬁ e -:
e Max. depolarization ratio > 0.03 as threshold g 04f
for identifying possible dust aerosol occurrence. ~ © 02f
e , ]
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Monthly mean layer-averaged depol. Ratio and dust occurrence show
maximum value in Spring (Dust occurrence is ratio of number of dust profiles and
total number of cloud-free profiles).

« Spring dust event is a possible reason to explain the observed lower LWF.



4. Large-scafe Vert
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e Both LWP and IWP are larger
under upward motion than under
downward motion.

* Influence of large-scale vertical
motion on IWP (57% difference
between up and down) is more
noticeable than on LWP (20%
difference).

 LWEF under upward motion is
slightly lower than under
downward motion except in May.
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At certain temperature/extinction coefficient, LWF is generally lower under
large-scale upward motion than under downward motion.

LWF difference (up-down)=o0.15
LWF difference=0.07

LWEF difference =o0.1,

LWF difference =0.06

top temp < -15 °C

top temp > -15 °C:

-6 < log(ext. coeff.) < -5

log(ext. coeft.) > -5 or log(ext. coeff.) < -6



2) Dynamical influence on cloud microphysics—
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Conclusion:

In spring season, liquid water fraction (LWF) as function of
cloud top temperature is lower than in other seasons when
temp colder than -15 °C, which indicates:

-- Aerosol loading and aerosol type are other important factors
to influence LWF other than cloud top temperature.

-- Lower LWF in spring is possibly due to Asian dust.

Conclusions and Future Work: —

Lalégg—scale vertical motion is closely related to cloud liquid
an

ice properties. LWF is lower under upward motion than
under downward motion.

Future works:

Better understand dust influence on cloud ice formation and
cloud microphysical properties.
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2) Influence of temperature inversion =

Me inversion strength (AT):

temperature difference between inversion base and
inversion top.

Note: only inversions co-located with mixed-phase
cloud layer are selected to do statistical analysis.
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* (Cloud liquid and ice paths are influenced by both cloud top
temperature and inversion temperature difference.
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