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• Downscaling climate model predictions, using consistent 
physics from global to regional scales 

• Differences in predictions due to resolving atmospheric 
processes, and not the physics parameterizations 



Motivation 

• CAM will be run at higher spatial resolution in the future, but the 
performance of the current suite  of physics modules at those 
scales is not known 

• Current computing capabilities do not allow global model domains 
to be run routinely at mesoscale resolutions 

• Rapid development and evaluation of the next generation suite for 
CAM requires the ability to isolate processes as well the ability to 
test parameterizations across a range of scales 

• There has been relatively little interaction between the WRF (cloud-
resolving and mesoscale) and CCSM/CAM (global scale) communities  

Models optimized for different purposes 

Lessons learned are not necessarily shared 



Approach 

Philosophy: Single parameterization for

 each atmospheric process for long-term
 climate simulations using a coarse grid 

Community Atmosphere Model (CAM5) Weather Research & Forecasting (WRF)  

Philosophy: Several parameterizations

 for each atmospheric process using a
 wide range of grid spacings 
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Engineering component: Merge code and
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Consistency Checks 

• Is total aerosol mass (PM10) from MAM similar to other aerosol models? 

• To check, MILAGRO simulations ( x = 12 km) performed for each model  

identical emissions, meteorology (feedbacks backs turned off), and chemistry  

dry deposition and wet removal turned off, fixed boundary conditions (no influx) 

MAM 
MADE/SORGAM 

MOSAIC 

black carbon organic matter sea-salt 

sulfate nitrate ammonium 

dust 

aerosol water dry mass 

• While total mass is similar, 
there are differences in the 
aerosol size distribution 

• MAM neglects NO3 

• MAM assumes SO4 is 
neutralized by NH4 to form 
NH4HSO4 

• MADE/SORGAM produces 
little aerosol water 

Total Mass (PM10) in Domain over 24 Days 



Comparison 

• AMT methodology: identical emissions, meteorology (aerosol-radiation-cloud 
feedbacks turned off), chemistry, dry deposition, boundary conditions 

MAM (from CAM5) 
modal – 3 modes, 18 species 

’simple’ 

MADE/SORGAM 
modal – 3 modes, 38 species 

MOSAIC 
sectional – 4 bins, 164 species 

‘complex’ 

1 simulation day ~ 21 min ~ 24 min ~ 60 min 
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μg m-3 fine PM (< 2.5 μm), excluding dust  ~1800 m AGL 

• Differences due to secondary aerosols (SO4, NO3, NH4, organics) 

• Treatment of organics: 

MAM: POA - non-volatile, SOA – simple yields 

MADE/SORGAM: POA - non-volatile, SOA - 2-product approach 

MOSAIC: volatility basis set, non-volatile POA & SOA  

MAM > MOSAIC 

MOSAIC > MAM 



Example 

• Differences in secondary aerosols and thermodynamic modules leads to 
large variations in uptake of water on aerosols 

• Differences in H2O influences aerosol direct effect and hygroscopicity 

MAM (from CAM5) 
modal – 3 modes, 18 species 

’simple’ 

MADE/SORGAM 
modal – 3 modes, 38 species 

MOSAIC 
sectional – 4 bins, 164 species 

‘complex’ 

1 simulation day ~ 21 min ~ 24 min ~ 60 min 

μg m-3 fine aerosol water (< 2.5 μμm) ~200 m AGL 

scale: factor
 of 4 lower 

• AMT methodology: identical emissions, meteorology (aerosol-radiation-cloud 
feedbacks turned off), chemistry, dry deposition, boundary conditions 



Downscaling 

CAM5 + IPCC AR5 emissions 

PM2.5 at 700 hPa, 18 UTC 19 March 2006 

WRF + CAM5 Physics +  
(IPCC AR5) emissions  

Aerosol Optical Depth 

• Magnitude similar, but small 
grid spacing add details 

WRF + CAM5 Physics +
 local emissions 

Mexico City 

x = 3 km 

• Differences mostly due to on-
line dust calculations 



Urban Site 
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Organic Matter (OM) at T0 Site 

Primary + Biomass Burning OM 

Secondary OM 

Sulfate 

Nitrate 

mean 

• SOA from MAM too high, OM 
from primary + biomass similar 
between MAM and MOSAIC 

• Scale dependance of SOA in 
MAM needs to be investigated 
further 

• Mean SO4 from MAM closer to 
observed than MOSAIC 

• 3-mode MAM neglects NO3 

observed: J. Jimenez, A. Aiken 
MAM: IPCC AR5 emissions 

MAM: local emissions 
MOSAIC: local emissions 



Regional Variations 
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Organic Matter (OM) 

Primary + Biomass Burning OM 

Secondary OM 

Sulfate 

Nitrate 

downwind city 

downwind 

city 

transport and
 mixing simulated

 reasonably well 

C-130 Flight Path 

• MAM and MOSAIC OM 
similar over city 

• SOA from MOSAIC too 
high everywhere 

• Downwind OM from MAM 
better than MOSAIC 

observed: J. Jimenez, P. DeCarlo 
MAM: IPCC AR5 emissions 

MAM: local emissions 
MOSAIC: local emissions 



Summary 

• Can now directly evaluate performance of CAM’s aerosol model, 
MAM, using spatial and temporal scales more compatible with field 
and operational data 

• New ability to directly compare performance of MAM and specific 
aerosol processes contained in CAM (e.g. SOA) against other 
representations 

• By comparing MAM with several ARM field campaign datasets, can 
better quantify its uncertainties for different locations and times 

MILAGRO (Mexico) 

CARES / CalNex (California) 

BNL (Long Island) 

GVAX (India) 

TCAP (Cape Cod) 

GOAmazon (Brazil) 


