The linear algebra of convection

Brian Mapes

Rosenstiel School of Marine and
Atmospheric Sciences, U. of Miami

with
Zhiming Kuang, Harvard University



Outline

e Linearity (!) of deep convection (anomalies)

* The system in matrix form: M
— built in z or p basis, using CRM or SCM
— eigenvector/eigenvalue basis

e Can we estimate M from observations?
— (and model-M from GCM output in similar ways)?

* - an important check, and a unique role for a GCM:

— Does GCM-output-diagnosed model-M agree with
SCM-mapped model-M ?
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Linearity (!) of convection

Sensitivities of Cumulus-Ensemble Rainfall in a Cloud-Resolving Model with
Parameterized Large-Scale Dynamics

Brian E. MaPES

NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado
My first grant! (NSF) Work done in mid- 1990s
(Manuscript received 1 August 2002, in final form 20 April 2004)

ABSTRACT

The problem of closure in cumulus parameterization requires an understanding of the sensitivities of convective
cloud systems to their large-scale setting. As a step toward such an understanding, this study probes some
sensitivities of a simulated ensemble of convective clouds in a two-dimensional cloud-resolving model (CRM).
‘The ensemble 1s mitially in statistical equilibrium wilh a steady Imposed Dackground Iorcing (cooling and
moistening). Large-scale stimuli are imposed as horizontally uniform perturbations nudged into the model fields
over 10 min, and the rainfall response of the model clouds is monitored.

Hypothesis:
low-level (Inhibition) control, not deep (CAPE) control

(Salvage writeup before moving to Miami. Not one of my better papers...)



first hint of linearity: response to
equal and opposite forcings
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APRIL 2010 TULICH AND MAPES

A much better job of it

Transient Environmental Sensitivities of Explicitly Simulated Tropical Convection

STEFAN N. TULICH
CIRES, University of Colorado, Boulder, Colorado

BRIAN E. MAPES
University of Miami, RSMAS, Miami, Florida

(Manuscript received 29 July 2009, in final form 13 October 2009)

ABSTRACT

A three-dimensional cloud-resolving model, maintained in a statistically steady convecting state by tropics-
like forcing, is subjected to sudden (10 min) stimuli consisting of horizontally homogeneous temperature
and/or moisture sources with various profiles. Ensembles of simulations are used to increase the statistical
robustness of the results and to assess the deterministic nature of the model response for domain sizes near




Heating rate responses to lower- and upper-
tropospheric parts of imposed T’

low-level
control
hypothesis
supported
(on these
scales...)
(...where
numerical
CuU param
operates)

Courtesy Stefan Tulich (2006 AGU)




Temperature and Moisture Perturbations

Imposed Separately

Response to Temperature

height (km)

height (km)

Courtesy Stefan Tulich (2006 AGU)




Linearity test:
Q,(T,q) =Q,(T,0)+Q,(0,q) ?

Vertically Averaged Heating Time Averaged Heating
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Yes: solid black curve resembles dotted curve in both time series & profile

Courtesy Stefan Tulich (2006 AGU)




Expectation value is linear,

even when not purely deterministic
Ensemble Spread:

Vertically Averaged Heating Time Average
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Outline

* Linearity (!) of deep convection (anomalies)
* The system in matrix form

— in a spatial basis, using CRM & inversion (ZK)

e could be done with SCM the same way...

— math checks, eigenvector/eigenvalue basis, etc.

e Can we estimate M from obs?

— (and model-M from GCM output in similar ways)?



The Matrix has
u vl. .
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ot "ol F 3 '+ ar o.3.2 Multidimensional linear systems
M ¢ ' - '*¥ 7 can include nonlocal
relationships

Can have nonintuitive aspects
(surprises)
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2. Method for constructing the linear response
functions

Our goal i1s to derive a matrix M so that, given the
anomalous state vector x, we can compute the anoma-
lous convective tendencies as

— = Mx. (1)

The state vector is considered here to include profiles of
domain-averaged temperature 7 and specific humidity g
anomalies (or their projections onto a set of basis func-



M is a tangent linear
convection parameterization

.

* Linearized about a steadily convecting base state

e 2 tried in Kuang 2010
— 1.RCE and 2. deep ascent-like forcing



Tulich and Mapes 2010 was

MENItE!;

COMVRETON - CRM(
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* Response is time dependent...
— We were seeing exp(Mt), not the timeless object M

» Stimulus injection is artificial/ debatable



Zhiming’s leap:
Estimating M w/ long, steady CRM runs

Linear Response Functions of a Cumulus Ensemble to Temperature and Moisture
Perturbations and Implications for the Dynamics of Convectively Coupled Waves

ZHIMING KUANG

Department of Earth and Planetary Sciences, and School of Engineering and Applied Sciences, Harvard University,
Cambridge, Massachusetts

(Manuscript received 16 July 2009, in final form 24 November 2009)

ABSTRACT

An approach is presented for the construction of linear response functions of a cumulus ensemble to large-
scale temperature and moisture perturbations using a cloud system-resolving model (CSRM). A set of time-
invariant, horizontally homogeneous, anomalous temperature and moisture tendencies is added, one at
a time, to the forcing of the CSRM. By recording the departure of the equilibrium domain-averaged tem-
perature and moisture profiles from those of a control experiment and through a matrix inversion, a suffi-

ciently complete and accurate set of linear response functions is constructed for use as a parameterization of

the cumulus ensemble around the reference mean state represented by the control experiment.




Zhiming’s inverse casting of problem

reace off
e mealin
clomain
neali
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Bumps on
forcing profile
provoke
bumps on
CRM'’s {ime-
MEAN
convective
heating/
drying profiles

v

o AN With these, build Mt column by column

* |Invert to get M! (computer knows how)

e Test: reconstruct transient stimulus problem



Outline

* Linearity (!) of deep convection (anomalies)

* The system in matrix form
— build it in a spatial basis: CRM & inversion (ZK)

— math checks, eigenvector/eigenvalue basis, etc.

e Can we estimate M from obs?

— (and model-M from GCM output in similar ways)?



Zhiming put a bump (perturbation)
on the forcing profile, and studied the
time-mean response of the CRM
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How does convection make a heating bump?

N CRM time-mean .
| Qxresponse: heating
alances forcing
"1\ (somehow...
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Now, how does convection know to do this?



How does convection ‘know’? Env. tells it!
presumably by shaping buoyancy profiles (Tvp — Tve)
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FIG. 1. An example of the temperature (b) and moisture (c) anomalies that are in equilibrium with an anomalous
convective heating profile shown in (a) and zero convective moistening tendencies everywhere.

Kuang 2010 JAS
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Image of M

Tdot -2 T’

Units: K and g/kg for T and g,

K/d and g/kg/d for heating and
Unpublished matrices in model stretched z coordinate, courtesy of Zhiming Kuang moistening rates



M-1 and Vi

M for 3D CRM {mag. square rooted for clarity)}

inu(M} for 3D CRM
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Image of M (stretched z coords, 0-12km

gdot

square root color scale



Image of M (stretched z coords, 0-12km

Units: K and g/kg for T and g, K/d and g/kg/d for Tdot and qdot
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Image of M (stretched z coords, 0-12km
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Outline

* Linearity (!) of deep convection (anomalies)
* The system in matrix form

— mapped in a spatial basis, using CRM & inversion
(ZK)

— eigenvector/eigenvalue basis

e Can we estimate M from obs?

— (and model-M from GCM output in similar ways)?



Eigenvectors: a new basis
Mlv.=A.v.
[ ] J J J
There are j 2 35 independent (but not orthogonal)

eigenvectors (each with an eigenvalue) for this well-
behaved 35x35 matrix M (18 T levels, 17 q levels).

*The real parts of all 35 eigenvalues are negative:
because there are no unstable, growing T’ or q’ profile
structures in a steadily forced convecting CRM.

*The imaginary parts can be anything: both positive and
negative A, represent the same oscillation in real profiles
T(z), q(z), so both appear (in c.c. pairs of As)



The 35 Eigenvalues
Sorted according to inverse of real part (decay timescale)

Eigenvalues: 3d {(red), 2d {blue)
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There is one mode with slow (2 weeks!) decay,
a few complex conj. pairs for o(1d) decaying oscillations,
“the rest” (e.g. diffusion damping of PBL T’, q" wiggles)



Gravest eigenvector: 14d decay time

#1 slowest decaying mode decay times=14.402 ,14.663d
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T (K> q {g/kg)

Column MSE anomalies damped only by surface flux

anomalies, with fixed wind speed in flux formula.

A CRM setup artifact.*
*(But T/q relative values & shapes have info about moist convection?)



eigenvector pair #2 & #3. Phase: 0°
~1d decay time, ~2d osc. period

#2 slowest decaying mode: real part decay time=1.14658+0.6506441 , 0.911156+0.5658351d
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950° phase: moist layer has ascended,
net heating (aloft) & drying (at 2-4km)
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Interp: congestus-deep convection oscillations

this phase (moist & unstable midlevels) causes tendencies toward its
opposite (upper warm cap over dried midlevels...which then moisten... etc.)

(Zhiming verified oscillations by transplanting this structure into CRM)



Outline

* Linearity (!) of deep convection (anomalies)
* The system in matrix form

— mapped in a spatial basis, using CRM & inversion
anything a CRM can do, an SCM can do

— math checks, eigenvector/eigenvalue basis, etc.

 Can we estimate M from obs?

— (and model-M from GCM output, in similar way)?
e an important role for GCMs



Exploiting the Information Content of obs
(or GCM simulation output)

* Link T/q to conv. heating/drying via composites
— they tend to show a statistically steady state

* times of increase and times of decrease are averaged

— Might the time-sequence-blurring properties of
averaged composites be a strength ??

* like in Zhiming’s steady CRM approach?



Exploiting the Information Content of obs
(or GCM simulation output)

* A few challenges

— Variables: we don’t measure heating and drying

* main observable w/ info content is horiz. wind divergence

— Coordinates: can’t control level by level (z or p)

* weakly-damped modes a more natural basis
— observed at significant amplitude, hence with less error



Proposal: a data-attuned activity
to characterize convection via M

* Build matrix in obs-friendly variables
— div(p)
e observable; w(p) is linearly related but spreads errors

— Lapse rate profile I' (p), plus T., . for completeness

surf
* observable; more physically related to convection than
local T(p)

— g(p) -- since moisture is locally linked to convection
e Build M in the most obs-error-robust basis

— least damped modes (CRM eigenvecs as first guess)

* rather than level by level



Proposal: a data-attuned activity
to characterize convection via M

* Once we have a robust matrix,

— transforming variables is straightforward
e eg. divow
e ortransform I back to T if desired

— transforming coordinates is linear

* find eigenvectors; iterate if different from CRM

* Application can be in the most powerful, incisive,
useful basis of variables and coordinates



Example 1: use of M to evaluate GCM

* THE MJO TRANSITION FROM SHALLOW TO
DEEP CONVECTION IN CLOUDSAT/CALIPSO
DATA AND GISS GCM SIMULATIONS

— Anthony D. Del Genio, Yonghua Chen, Daehyun
Kim, Mao-Sung Yao

* Journal of Climate Submitted July 1, 2011



Pressure (mb)

Del Genio et. al. 2011 GISS GCM result

e GISS GCM columns with same WVP (PW)

» but different plume tops (<3km, >6km)
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* |sthe GCM’s response to this T, q°
appropriate?
 Which should be more important: T" or q’?



Pressure (mb)

Del Genio et. al. 2011 GISS GCM result
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Example 2: ARM data to build M-1?

 Composites of CMBE T’ and g’ around rain
events in summer vs. winter at SGP

— Emily Riley, Siwon Song, Brian Mapes

» In preparation

e Can we stack these into column vectors
meaningfully?

 Can we use the lag information sensibly?



Seasonal:

Temperature perturbation [K]
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Seasonal:

Relative Humidity perturbation [%]

all_rh_nwp_p pert prec > 0 (weighted) in jja
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Wrapup

Convection is a linearizable process
— around convecting base states

* How many? as many as give dynamically distinct M’s.
This unleashes a lot of math capabilities
— e.g. basis/variable transformations are easy

e for maximum convenience and then power
ZK builds timeless M using steady state runs
— can we do same w/obs. composites of T and g’ ?

e around moist events (rain, heating, divergence...)
Checks on the method are several

— as are incisive obs/model comparisons
* needs more work, more people on the same page!

* Too big for one or two of us.
— Lot of background needed though...



