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Observational View (Leary and Houze,

1980)
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Fig. 2. Schematic vertical cross section of the idealized mesoscale system
showing spurces and sinks of condensed watet, Symbols are defined in Section
2 of the text.
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How much convective
organization Is sub-
grid in a climate
model?

Can we capture it by
parameterization?
Can some types of
convective
organization only be
simulated explicitly in
models of sufficiently
high resolution?
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From Donner et al. (1999, J. Atmos. Sci.)

condensate > .25 g/kg; rad heating > 14 K/d; rad cooling <-16/d



Convective Organization and
Cumulus Parameterizations
on Single Grid Columns
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Donner Deep Convection Scheme
A Liniform distribugion of E_ . evaporation from cumulus updrafts
B Uniform distribudion of |, evaportion in cumulus downdmafis
C Uniform distmbution of water sapor, provided by cumulus epdraiis, available 1o mesascale chosds
D Warer vagor [n cumalus environment advested by mesoscale updrafis
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from Benedict et al. (2012, J. Climate, in press)



Radiative Influences

pNoormes e Breakdown of
/¢ +N 7.4  banded
organization

o Effects of clouds
on radiative
heating and
feedbacks to
convective
organization
Important

km km

Time series of precipitable water (mm) for
fully interactive radiation scheme (left) and from Sue Van Den
Interactive radiation without contributions by Heever, CSU
clouds and precipitation (after Stephens, van
den Heever and Pakula, 2008)



Convective - System Size Distribution
1(a) Cell Meso
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AM3 5Ckm Mesoscale Precipitation Fraction (DJF)
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Until recently, cumulus
closures have mostly been
based on a grid-mean view of
Interactions between cumulus
plumes and their environment,
e.d., quasi-equilibrium.
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dCAPE/dt (J/kg/h)

FITRET]

ARM: 6 h Averages

500
400
2001
s
Te
o fd Ba,
0
& i& j&a -
& . m N
_am “ &
S
—sm -
- -10|0 5 1E 250 jaRID 4&0 5&0
3, CRPE, . (Jkai)

GO0

from Donner and Phillips (2003, J. Geophys. Res.)
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Cloud-resolving models
suggest few cumulus plumes
“see” grid mean properties.
Sub-grid variabllity in cloud
environments Is more
relevant.
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Y-Direction (km)

3-D CAPE at 20 hr (J kg™
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from Donner et al. (2001, J. Atmos. Sci.)



Organized Convection: Conceptual (from Brian

N - Mapes)
 |ocal conditions differ from large-scale mean

 preferentially favorable -- by natural selection

» unfavorable flucts & corrs just lead to non convection

e organization thus a positive effect on convection

» like boosted parcels, w/less dilution (in plume scheme terms)

e organization a positive feedback, but takes time

» new development updrafts struggle initially for lack of it

e tuned GCMs assume ubiquitous org., not lack of
it

» New convection encounters mean convection's advantages
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Organized Convection: Treatments (from Brian
Mapes) o
 There are many observed aspects to organization

— preferential nonwake updraft source, outflow boundary
triggering, moist patches aloft, CIN reduction by gravity wave
T', correlations of all these, etc.

— natural selection exploits all (aithough not with perfect efficiency)

 The concept thus has a footprint in many schemes

— wake schemes, plume ensembles, "CKE/MKE", parcel boosts,
entrained air preconditioning, tails & correlations in PDF
scheme(s), nonlinear skews to stochastic CIN/CAPE, etc.

* None is wrong; all are incomplete; any could be tuned to
give enough net climatological boost & positive feedback
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Organized Convection: Other Effects (from Brian
Mapes)

1. Anvil clouds abut convection in mesoscale storms

* they have significant cross-isentrope flows, hinging on
cloud & precipitation processes
— treatments:
»  append to cumulus scheme (GFDL, Donner)

» anvil category of LS cloudiness (GEOS-5, Bacmeister &al.,
Donner anvil also feeds LS cloudiness)

2. Exotic momentum flux effects (like 2D vs. 3D)

 depends on details of geometry, not just clumping
—  hence on shear over various layers
— uncertain to parameterize; cumulative impacts above noise (?)
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Control of deep convection by sub-cloud lifting processes:
The ALP closure in the LMDZ5B general circulation model
Rio et al., Clim. Dyn., 2012

Sub-cloud lifting processes, boundary-layer thermals (th) and cold pools (wk), provide:
> an available lifting energy: ALE (J/kg) and

> an available lifting power: ALP (W/m2)

that control deep convection ~ __j;-
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Triggering: Closure:

MAX(ALEth, ALEwk) > |CIN] M, = £ ALP

/[|CZ"IF\-"| + Q'II,FE,QK

ALP = ALPth+ALPwWkK ~ w'3 wh=f(PLFC)




Diurnal cycle of convection over land: From 1D to global simulations
Diurnal cycle of precipitation (mm/day) the 27 of June 1997 in Oklahoma (EUROCS case)
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Impact on precipitation mean and variability Hourdin et al., Clim. Dyn. 2012
IPSL-CM5A/CM5B: 10 years of coupled pre-industrial simulations

Mean precipitation (mm/day) Intra-seasonal variability
of precipitation (mm/day)
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Some impact on precipitation annual mean Strong impact on intra-seasonal variability
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Some types of organized
convection have such large
space and time scales that

they are most easily modeled
explicitly in high-resolution
models.
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Orogenic MCS and the diurnal cycle of precipitation

Vertical shear organizes sequences of cumulonimbus into long-lasting
mesoscale convective systems (MCS), which propagate across continents,
efficiently transporting heat, moisture and momentum

Next morni
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Propagating MCS over U.S. continent

NEXRAD analysis o . .
Carbone et al. (2002) 3-km explicit 10-km explicit Miller
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Effect of resolution on CMT:
Negative for 3 km & 10 km grids, positive (incorrect) for 30 km grid
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Convective momentum transport by MCS in MJOs simulated
by a global cloud-system resolving model (NICAM)
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Even convective organization
with large space and time
scales can be simulated to

some extent using
appropriately cumulus
parameterizations.
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Orogenic MCS over U.S. continent
Superparameterized Community Atmospheric Model (SPCAM)

b) c= 20 m/s c) C= 12 m/s

CAM: standard convection
parameterization — No MCS

SPCAM: convective heating
generated on 2-D CRM grid is
b‘ organized by large-scale shear
into propagating MCS on the
climate model grid
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Ratio of East-west Symmetric Rainfall Power vs.
Vertical Component of Mean Winter Warm Pool NGMS
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Normalized Gross Moist Stability

from Jim Benedict



Summary

« Convective organization occurs in both cloud morphology and
cloud environments in observations and cloud-system-resolving
models.

« GCMs are beginning to incorporate stratiform portions of
convective systems and replace grid-mean closures and triggers
with approaches that incorporate sub-grid organization in cloud
environments and boundary layers.

e Some aspects of convective organization span space and time
scales that are so large that they are best modeled explicitly by
high-resolution models. Even these aspects can be at least
partly captured by designing traditional cumulus
parameterizations appropriately.
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