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“Background” (minimum imposed) cloud droplet
concentration influences aerosol indirect effects
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Low N, background = strong Twomey effect
High N, background = weaker Twomey effect

Quaas et al., AEROCOM (Atmos. Chem. Phys., 2009) Hoose et al. (GRL, 2009)



Extreme coupling between drizzle and CCN

(a) MODIS \ns. Image, 1240 UTC August8
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(b) CCN and total aerosol concentrations
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Prevalence of drizzle from low clouds
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Drizzle occurrence = fraction of low clouds (1-4 km tops) for which Z__ >-15 dBZ
Leon et al., J. Geophys. Res. (2008)

Half of all clouds precipitate at Graciosa (Rémillard et al. 2012)



Simple CCN budget in the MBL

N — [N]ent + [N]sfc:' T [N]ijal T [N]d?’*y dep

Model accounts for:

* Entrainment

e Surface production (sea-salt)
e Coalescence scavenging

e Dry deposition

Model does not account for:

 New particle formation — significance still too uncertain to
include

e Advection



Production terms in CCN budget

Entrainment rate \ / FT Aerosol concentration
[ N] __ We(NpT—N)
ent Zj
L
\ MBL depth

Sea-salt _
parameterization-dependent Wind speed at 10 m
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We use Clarke et al. (J. Geophys. Res., 2007) at 0.4% supersaturation
to represent an upper limit




Loss terms in CCN budget: (1) Coalescence

-dN/dt (PARAM) [cm™ day™']
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MBL mean CCN loss rates

Contours are
loss rates in
cm=3 day?!

P [mm day™']
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Loss terms in CCN budget: (2) Dry deposition

Wdep

[N]dry dep. = =N Z; \

Deposition velocity

, Wye, = 0.002 to 0.03 cm s (Georgi 1988)
N] KP-nh — 2 lkg-1
[ coal _ B7cB K=2.25m?kg? (Wood 2006)

[N]dry dep. WdEP

For Pz =>0.1 mmday!and h=300m

¥

[ ]dry dep.

=3 to 30

For precip rates > 0.1 mm day!, coalescence scavenging dominates



What controls N,?

e Simple budget model for
CCN/N, in the MBL:

e Assume aerosol sources constant
(here represented by FT
concentration “buffer”)

* Model pattern almost entirely
driven by precipitation sinks

e Can reproduce significant amount

i i I . e
of variance in N, over oceans = | [cm™]
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implications for significance of AOD
vs r, relation ships Wood (2011)



Conceptual model of background FT aerosol
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Conclusions

Aerosol loss rates to coalescence scavenging in weakly-
precipitating clouds are significant and are a dominant control on
CCN in regions of marine low clouds

Simple CCN budget model predicts cloud droplet concentrations in
regions of persistent low level clouds with some skill,
demonstrating importance of light precipitation for setting
“background” Nd in the remote marine PBL

Entrainment aerosols from FT (and sea-salt in regions of stronger
mean winds) can provide sufficient CCN to supply MBL. Need to
understand factors controlling entrainment, but most importantly
need measurements of FT CCN concentrations.

Significant fraction of the variability in Ny across regions of
extensive low clouds is likely related to drizzle sinks rather than
source variability. Rates can be quantified with sensitive ARM
radars.



Southern Ocean Annual Cycle

Marked annual cycle of
N, in low clouds over
Southern Ocean

Summer maximum
likely biogenic (DMS?)
In-situ and satellite
observations consistent

Summer maximum (70
cm3); Winter minimum
(35 cm™3)

Twomey effect 25%7?

Not well captured in
models (e.g. CAM5)
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