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Challenges

* |ce nucleation processes involving aerosols are key to the
formation and properties of cirrus and mixed-phase
clouds, and thereby can impact both the atmospheric
radiative energy distribution and precipitation processes.

* Compared to droplet formation in warm clouds, ice
nucleation is more complicated and much less
understood.

* Large uncertainties exist in the representation of ice
nucleation processes in climate models, and aerosol
effects on mixed-phase and cirrus clouds.



Ice nucleation processes are poorly understood

Multiple Ice Nucleation Mechanisms
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Global Mean Black Carbon Radiative Forcing from 1750 to 2005
Bond et al. (2013)

Global climate forcing of black carbon and co-emitted species in the industrial era (1750 - 2005)
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Ice nucleation processes are poorly represented in climate models. Large uncertainties are
associated with aerosol effects on mixed-phase and ice clouds.
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/' CAICE fresh seawater (Scripps pier) wave-
breaking experiments

Modest dependence on n>0.5um
(mimics airborne inorganic IN)

100 -
] ¢ T=-32C
+T=-30C »

s T=-25C o o0
o i ¢ K ; *
o 10 -
ry ’,:"’ .
]
' - L 4
=
L
v
S’ l |
Z
c

O.I T T L T T T T T 1T 1711

I 10 100

naer>0.5 um (scm'3)

Co&)al%do

University



Ice Nucleating properties of coated and uncoated dust particles
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Crystalline

Atoms are in a near-
perfect periodic
arrangement.

No periodic
arrangement of atoms.
Lacks the long-range
crystalline order.



Climate Model Results: Heterogeneous — (Homo- & heterogeneous)
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The Role of Ice in mixed-phase indirect effects?
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lce nuclel number concentrations
In mixed-phase clouds
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Ice nucleation depends upon the dust mineralogy.
Dust speciation treatment in GCM is important.

Slide from Xiaohong Liu (Univ. Wyoming)



Thunderstorm case of DC3
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IS the Indirect Torcing by aircrait soot positive or
Mwmgative?

HL: FNT Ima2 HH: FNT Mean: =0,336 Wim2

aN T BT B B B BT BT R | S0P A B B BT B BT BT BT R R R
N =1 T —_ [
1 - - - -
i “Pe- i
30N - 0N -
] J - N i
o= g o - -
",-'H'1 L
305 - ol 305 o

BOS —:._. )
. -U. m 3

808 =TT — R R S S i B me e
130 150W  1E0W  B0W BDW  30W ] 30E BOE S0E 1E0E 1L0E 18 TR} TROW 120w BDW BDW 30w 1] 30E G0E S0E 120 150E 180
LL: FNT Mean! 0.813 Wim2 LH: FNT Mean! 0.807 W/m2
M T B B — — — MR B B T B | M I . — — M T BT I |

805 - = . : sns-. - R .
] e L4081 W/m2 | ] € ——{ LH: +0.81 W/m2
S LA LS ELALE ELALE LN BLALE B B A LA L B B B DL BLELE BLELA BLELE BLELE NLELE BANRA BUNLE BLER BUELE BARL
180 150W 120W SOW  BIW D0W 0 S0E  BOE  90E 120 1508 180 180 150W 120W G0W GOW J0W 0 90E  AOE  90E 120 1SOE  1BOD

-10-8 6 4 -2 0 2 4 6 8 10

The global mean radiative forcing of aircraft soot on large-scale cirrus strongly depends on
the background ice nucleation (ie., sulfate number). It ranges from -0.70 W/m2 to +0.81
W/m2 in our idealized studly. Slide from Joyce Penner (Univ. Michigan)*?
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Key Issues identified

Ilce Nuclei budget in the atmosphere (sources of IN?). This is needed
to constrain the cloud models and, also, the remote sensing
retrievals.

Long-term IN measurements are missing at DOE-ARM sites. These are
CRITICALLY needed to advance the Ice Cloud research forward.

Classify the IN concentration as a function of aerosol size, chemical
mixing state, composition to better understand the ice nucleation
processes.

IN instrument comparison workshop to better understand the
performance of IN instruments.

Competition between heterogeneous and homogenous freezing in
cirrus clouds.



Key Issues cont.

Relative importance of Ice Microphysical processes (ice nucleation,
ice growth, Bergeron-Findeison process etc.).

Aerosol vertical profiles (size and number) at DOE-ARM ground
sites to constrain ice number concentrations.

Role of contact freezing in ice formation. Importance of this ice
nucleation mechanism is unclear.

Role of different aerosol size and chemistry (black carbon,
biological, coated dust, organics) towards inducing ice. Pre-
activation/memory effect on ice nucleation.
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Research Needs to advance science

We need dedicated IN instrument (CFDC) that can be deployed in
the field as well as on the aircraft. Deployed at DOE ARM ground
sites will provide long term IN measurements.

IN closure studies to understand the mixed-phase cloud
formation: Field experiment at Barrow site. Deploy IN, CVI,
aerosol characterization, and single particle mass spectrometer
instruments. Cloud resolving model simulations to examine the
sensitivity of various ice microphysical processes.

Participate in the international IN instrument comparison
workshop.

Future in-situ ice cloud experiments should include aircraft CVI to
determine the composition of ice crystal residues.
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Action Plan

Short Term Goals (0 to 2 years)

v Purchase commercial IN instrument (CFDC).

v’ Deploy at Barrow ground ARM site, and start collecting IN data
when boundary layer is well mixed.

v’ Use IN measurements to validate the remote sensing retrievals and

constrain the models.
(Let’'s begin making progress to understand Ice Nucleation!!!)

Long Term Goals (2 to 5 years)

v |OP at Barrow for IN closure studies.

v' Deploy IN instrument at various ARM sites.

v’ Participate in the proposed multi-agency Southern ocean field
experiment (SOCRATES) to understand the importance of biological
particles towards ice formation.
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