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The challenge of ice nucleation parameterization...
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Sensitivity studies of dust ice nuclei effect on cirrus clouds
with the Community Atmosphere Model CAMS
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Investigation of influence of two different parameterizations of
homogeneous and heterogeneous ice nucleation.

The parameterizations differ significantly in the number
concentration of dust ice nuclei.
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The challenge of ice nucleation parameterization...
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Frequency distribution of homogeneous nucleation events in
CAMS for two different ice nucleation parameterizations.
The differences arise from the competition between
heterogeneous and homogeneous ice nucleation.

Liu et al., ACP 2012



Immersion freezing described by water activity...
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A water activity based model of heterogeneous
ice nucleation kinetics for freezing of water and
aqueous solution dropletst
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« Activity-based immersion freezing model unites effects of solute
concentration, ice nucleus surface area, and cooling rate (time).

* Provides the basis for a robust, physically-based parameterization of
heterogeneous ice nucleation.

« Homogeneous and heterogeneous ice nucleation are not tied together
as, for example, with parameterization of Kaercher & Lohmann.

Question: Is this level of detail realistically able to be included in cloud
models, especially for heterogeneous aerosol populations?



Immersion freezing described by water activity...
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Based on classical nucleation theory; extension of activity
parameterization for homogeneous nucleation.

Knopf & Alpert, Faraday Discuss. 2013



Immersion freezing described by water activity...
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The approach is validated through extensive measurements with
mineral dusts, biological particles, and organic compounds.

Knopf & Alpert, Faraday Discuss. 2013



“Mixed” stochastic models of ice nucleation...

E.g., soccer ball model

It breaks all implicit connections between 9
the number of patches, the size of the
patches, and the distribution of nucleation
rates.

It is therefore general, and allows for

)2

various idealized limits: /
. og = 0 — Uniform population, i.e.,

the traditional, purely stochastic ] 1 ]

view. — 3
. n =1 and oy > 0 —» Externally image from regentsprep.org

mixed population.
. n > 1 and oy > 0 — Internally mixed

population (with statistically identical

particles).

Niedermeier et al., ACP 2010
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“singular” behavior from a purely stochastic

Narrow @-distribution — exponential decay, purely stochastic.
Broad O-distribution, small n — decay tends to saturate, seemingly singular.

Niedermeier et al., ACP 2010



lce nucleation on biological particles...

Suspendable macromolecules are responsible for ice
nucleation activity of birch and conifer pollen
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Immersion freezing of birch pollen washing water
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Ice nucleation efficiency for some pollens comes from
macromolecules that can be suspended in washing water.
Question: Could this be a route for multiplying the biological effect

beyond pollen particle concentrations?
Pummer et al., Atmos. Chem. Phys. 2012
Augustin et al., Atmos. Chem. Phys. accepted



Biological ice nuclei...
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Pummer et al., Atmos. Chem. Phys. 2012



Biological ice nuclei...

Czech birch
measurement
300 nm
® 500nm
® 800nm
exponential fit
300 nm
500 nm
800 nm
Soccerball Model | |
300 nm
- =« 500 nm

ice

= == +800 nm

16 -18 =20 22 24 26 28 30 -32 -34 -36
T [°C]
* Ice nucleation by macromolecules obtained from birch pollen.

 The observed plateaus in freezing probability allow ice
nucleation rate for single macromolecules to be measured.

Augustin et al., Atmos. Chem. Phys. 2013



Depletion of ice nuclei...

A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds:
Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes
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Arctic stratus & altocumulus clouds tend to be thin, long-lived, with
weakly precipitating ice.

Question: Where do all the ice nuclei come from?!



Depletion of ice nuclei...
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For the simulated conditions, w, < vy (see Table 3), and
« Entrainment speed is much less Eq. (1) can be simplified to
than ice crystal fall speed. AN N o)
. . — =W, — U,
 |ce concentration is much less de e N

than the ice nucleus
concentration.

Dividing the ice crystal reservoir [IN; by its sink vgV;
gives an e-folding time scale H/vyof about 20-30 min on
which N; relaxes toward its steady-state value

N, = NINWe/Uj" (3)

Fridlind et al., JAS 2012



Contact nucleation...

Atmos. Meas. Tech., 6, 2373-2382, 2013
www.atmos-meas-tech.net/6/2373/2013/
do1:10.5194/amt-6-2373-2013 — :
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Experimental quantification of contact freezing in an
electrodynamic balance

N. Hoffmann, A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner
Karlsruhe Institute of Technology, Mailbox 3640, 76021 Karlsruhe, Germany

A supercooled water droplet is suspended in an electrodynamic
balance.

A steady air flow containing insoluble particles results in collisions
between the particles and the droplet.

See also Hoffmann et al., Faraday Discuss. 2013



Contact nucleation...
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« The droplet can freeze upon contact, or upon immersion after
contact.

Hoffmann et al., Atmos. Meas. Tech. 2013



Contact nucleation...
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* Freezing rate is equal to product of the collision rate and the
probability of freezing on a single contact.

« Collision rate can be calculated (and confirmed by independent
measurements, so measured exponential survival curve results in
the single-contact freezing probability.

Hoffmann et al., Atmos. Meas. Tech. 2013



Contact nucleation...
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Methods are finally being developed for quantifying contact
nucleation.

The freezing efficiency in this experiment is defined as the ratio of
the number of freezing events to the total aerosol surface area
coming in contact with the supercooled drop.

Niehaus, Cantrell, et al., JAOTech in review



Some unanswered questions for future research...

How relevant is the “stochastic” aspect of ice nucleation in the
atmosphere? Are singular approximations good enough?

Can parameterizations based on classical nucleation theory
(e.g., activity-based) be combined with internally-mixed models
(e.g., soccer ball) to yield useful parameterizations?

What is the role of biological ice nuclei? Can we achieve an
understanding of the “active” macromolecules?

What is the explanation for long-lived ice precipitation from
stratiform, mixed-phase clouds? What is the source of ice
nuclei?

What is the physical basis for contact nucleation? Can it be
guantified and included in models?




