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fits for N(D) for developing & evaluating retrieval algorithms 
 

• What is uncertainty on these bulk parameters induced by 
shattering of large ice crystals on inlets & tips of in-situ probes? 
 

• What is uncertainty induced by fitting algorithms on derived 
gamma fit parameters characterizing size distributions? 
 
 



Effect of Shattering 
• Ice crystal size distributions (SDs) 

from forward scattering and 
optical array probes (OAPs), like 
2DC, may be biased by shattering 
 

• Modified tips for OAPs & varying 
processing techniques based on 
particle interarrival distance (time) 
have been used to correct for 
artifacts 

Standard tips 

Modified tips 

Korolev and Isaac (2006) 



Last Spring 
• Showed data from 2 campaigns with co-located standard & 

modified 2DCs to investigate: 
– Identified conditions most conducive to shattering 
– Determined effect of shattering on bulk properties 

 
 
 
 
 
 
 

 
 
 
 

Campaign Platform Time + Location 

Instrumentation 
Development and Education 
in Airborne Science phase-4 
(IDEAS) 

National Center for Atmospheric 
Research C-130 

Research flight 3               
(25 October) and 4 - 
1 November 2011 
near Cheyenne, WY 

Indirect and Semi-Direct 
Aerosol Campaign (ISDAC) 

National Research Council of 
Canada Convair-580 

30 April near 
Fairbanks, Alaska 
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Compare numbers of particles from standard tips (Ns) with 
number of particles from modified tips (Nm) from IDEAS 
 
Fewer shattered particles with algorithms enabled 
 
Ratio of Ns/Nm increases with median mass diameter Dmm 
 
 
 

Compare Standard & Modified 2DC 



Impact on bulk parameters 

 
 
 

IWCmo vs. IWCst for IDEAS+ISDAC shows ~20% difference, 
which is less than uncertainty in IWC due to m-D relation 
 
In –situ data provide reasonable IWC estimates 
 
 



Comparison of 
2DC/ HOLODEC 
during IDEAS 
shows good 
agreement  
 



Comparison of 
2DC/ HOLODEC 
during IDEAS 
shows good 
agreement  
 
 Suggests 
algorithms + 
tips does 
reasonable job 
removing 
artifacts 
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Efforts to Understand Shattering 

• Look at distribution of interarrival times on probe 
• Why is there a difference in location of peaks between 

ISDAC/IDEAS? 
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Modeling Shattering 
• Develop model to 

characterize shattering on 
probe tips 
– Particles hitting tips shatter 

into n fragments distributed 
by Poisson statistics across 
length l in direction of flight 

– Probability of single 
fragment entering sample 
volume is k 

• Compute distribution of 
interarrival times for 
IDEAS/ISDAC using 
observed concentrations 
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Modeling Shattering 
• Example of calculation for 

N=1 L-1, n=10, l = 1 cm, 
k=5% 

• Investigated location of 
modes (τ1, τ2) and relative 
importance of different 
modes as function of input 
parameters 

• τ1 (natural particles) inversely 
correlated with N, TAS but not l 
or n 

• τ2 (artifacts) correlated with l, 
and inversely correlated with 
TAS, N and n 
 
 
 
 



Simulation of ISDAC/IDEAS 

• Location of natural mode differs due to varying 
concentration between project 
 
 
 



Simulation of ISDAC/IDEAS 

• Location of natural mode differs due to varying 
concentration between project 

• Location of shattered mode similar (but differed in 
observations): perhaps l, k or n differed due to 
variations in characteristics of crystals 
 
 
 



Gamma Distribution: 
Mathematical Representation of Size Distributions 

• N(D) = Number Distribution Function 
• N0 = intercept 
• µ = shape 
• λ = slope 

 

N D( )= N0D
µ exp −λD( )



Gamma Distribution: 
Mathematical Representation of Size Distributions 

• N(D) = Number Distribution Function 
• N0 = intercept 
• µ = shape 
• λ = slope 
Have determined methodology for quantifying 
uncertainties in N0, µ, and λ based on 
uncertainties in measured size distributions 

 

N D( )= N0D
µ exp −λD( )



There is broad range of N0/µ/λ that fit SD well  
 Range determined by IGF technique that 

allows derived/observed moments to differ 
by ∆χ2 

 Can’t represent by single N0/µ/λ  value 
 

 
       

 



But how big is ∆χ2? 
 
N0/µ/λ  determined depend on tolerance allowed 

 



Determination of Δχ2  
• Uncertainty in measured SD determined by 

square root of # of particles in each bin, 
gives Δχ2 

• If Δχ2 < χmin
2 for fit then Δχ2 = χmin

2  



1 SD Example: Aug. 20, Time: 170840 

Original 
χ2 = χmin

2 = 0.0114 
χ2 = 0.0871 
χ2 = Δχ2+χmin

2 = 
0.1302 
Uncertainty 

χ2 No μ λ 

0.0114 4.037e-05 -0.5 39.6535 

0.0871 1.6298e-04 -0.2 49.5545 

0.1302 2.8480 1.8 113.9109 



Conclusions 
• Modified tips & processing algorithms combined best 

mitigate existence of shattered particles 
• Modified tips reduce β, IWC by ~20%, no systematic bias 

in re 

• Theoretical model does reasonable job describing 
shattering, but still unclear on what basis of shattering 
depends on 

• Quantitative basis for determining range of N0, µ, λ 
describing gamma fit distribution established  

 
 
 
 
 



Next Steps 
• Conduct fits to SDs measured during past 

campaigns: 
– Currently working on MC3E/SPARTICUS data 
– IGF can accommodate for missing crystal ranges due to 

shattering 

• QUICR ramifications: 
– Level of uncertainty in bulk parameters different 

(determined on parameter by parameter basis) 
 



Determination of Δχ2  
• Calculate uncertainty in each 10-s N(D)  

create N(D)min(N(D)max) from N- 𝑁 (N+ 𝑁) 
• Compute 3 moments for each N(D) 

uncertainty 
• Calculate χ2 (comparing to moments of 

original N(D)) for each uncertainty  
χ2𝑁(𝐷)𝑚𝑚𝑚

; χ2𝑁(𝐷)𝑚𝑎𝑎
 

• Δχ2 = average of both χ2 

• If Δχ2 < χmin
2 for fit then Δχ2 = χmin

2  



• Investigated location of 
modes (τ1, τ2) and relative 
importance of different 
modes as function of input 
parameters 
 
 
 



Last Spring 
• Showed data from 2 campaigns with co-located standard & 

modified 2DCs to investigate: 
– What conditions are most conducive to shattering? 
– Effect of shattering on bulk properties? 

 
 
 
 
 
 
 

1. Showed shattering increased with Dmm & amount of riming  
2. Both modified tips & algorithms needed to remove artifacts 
3. Tips more effective than algorithms for removing artifacts 
4. Bulk IWC, b could be estimated within about 20% 
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