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Background

e 1/23/06 TWP-ICE
e 10 CRM and 4 LAM simulations

— ~1-km horizontal grid spacing with
76-102 vertical levels

— Various bulk microphysics schemes
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Simulated Convective Radar Reflectivity Bias

High bias in convective radar CRMs LAMs
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Is this an ice microphysics problem as 1°°Z:
is commonly stated in the literature?
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Bulk microphysics assumptions a cause?

Differences in simulated radar
reflectivity are modulated by
different assumptions in

hydrometeor properties

Hail lowers reflectivity aloft (falls out
faster)
Non-spherical m-D lowers reflectivity by

putting more mass in smaller particles

i > 0 can lower reflectivity by narrowing
the size distribution if N is predicted

Easy to blame the ice MP
parameterization,

BUT all simulations over-
predict reflectivity!
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3D Deep Updraft Statistics

Dual-Doppler Representativeness 50t percentile 90" percentile
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Extreme upper level peak is caused by excessive freezing
of lofted rain in large updrafts with nearly undilute cores
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Effects on Latent Heating

Reducing upper level convective
strength by removing the latent heat
of fusion for freezing liquid
increases detrainment at lower
levels

Increases stratiform precipitation by
18%, primarily through rain rate
rather than area

Reduces convective latent heating
and lowers the altitude at which it
peaks

Increases stratiform latent heating
and lowers the altitude at which it
peaks
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Properly comparing simulations and retrievals

 Before making comparisons, the limitations of the
retrieval need to be taken into account

— This requires manipulating the dataset to remove
untrustworthy data, accounting for uncertainty if possible,
and accounting for differences in resolution and sampling

* Best done with collaborating modelers and retrieval experts

e When properly done, simulation biases can be
exposed and models improved

* When not properly done, simulation biases can be
covered up and models worsened



What is needed for future progress in
understanding deep convection?

1. Uncertainty estimates
2. Validation of LES results against observations

3. To get precipitation and cloud properties correct, you
need buoyancy and condensate loading in convective

drafts to be correct

— How do we accurately retrieve the distribution of condensate
mass in association with vertical wind speeds?

— Environmental winds and thermodynamics with scanning radar
coverage provide important context
4. Simulations are likely most biased for typical tropical deep
convection than stronger land convection
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