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Assumptions

»Particles are composed of internal mixtures of salts and
Insoluble components.

»Bulk hygroscopicity = volume-weighted mean of
hygroscopicity of all components.

»Supersaturation is small.
»Particle water dominates the dry volume.

»Aerosol can be described by multiple log-normal size
distributions, each with uniform bulk hygroscopicity.

»CCN concentration is determined by the number with critical
supersaturation less than the maximum supersaturation.



Kohler Theory: Droplet Growth and Supersaturation
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Kohler Theory at Equilibrium
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| for different materials
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Biomass Burning Hygroscopicity
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Mixtures of Components

K= Z&'il('i

Petters and Kreidenweis, ACP (2007)



From size distribution to CCN concentration
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Convert from size distribution of number to S, distribution
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dinS. dlnr, dnS.

(2 443 dinr, 2
= > —
From c 27’(7:3 dlnSC 3
dN IN, ( In’(S, /Sc)%\ , A4
== CXp — 2 Sm = 3
dinS, “3\2zho, pt 2In" o, J 2Tkr,

CCN is number with S_< S. Assume all particles in mode have same composition.
1
CCN(S) = EZN,,, [1-erf(z,,)]

where Z, = 2111(Sm /S)/(3\/§ th'm)



How CCN concentration is used in models

N,, and mass concentrations of each component in the
mode are predicted.

kis diagnosed from the volume mean ofk for all
components in the mode.

» CCN concentration is diagnosed from size distribution
and k at specific S

Sox parameterized in terms of aerosol and updraft
velocity

The challenge is to determine the maximum
supersaturation S, .,



Complications

» Adsorption
+ Surfactants
» Semi-volatile soluble components
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Adsorption by Dust
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Surface Tension Effects
Abdul-Razzak and Ghan, JGR 2004

» Surfactants suppress surface tension, particularly at high concentrations.

» Suppression of surface tension decreases as droplets become diluted during
condensation.

» For activation it is only the surface tension at activation that matters.

» The critical radius and supersaturation follow from solving for the maximum
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Surfactant vs Hygroscopicity
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Co-Condensation of Semi-Volatile
Soluble Components

- Condensed and dissolved semi-volatile mass increases
as droplet volume increases 443

. 2
+ Increased size and solute reduces S¢S, = T
Kr

- This effect depends on aerosol number concentrdtion
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Solubility (g/L), distribution 1
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Riipinen et al., ACPD (2014)
3 simplifying assumptions :
(1) complete dissolution at
the point of activation, (2)
combining the aerosol
solubility with molar mass
and density into a single
hygroscopicity parameter K,
(3) assuming a fixed water-
soluble fraction &
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Solubility Basis Set
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Conclusions

Theory for salts is mature

Hygroscopicity can be determined from size-resolved
measurements of S,

Adsorption by dust can be represented
Surfactant effects can be neglected

» Co-condensation of soluble components can be
important but difficult to represent

Solubility Basis Set and equivalent k provide a path
forward
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