D1: Development of single-particle databases from in situ data

— use in-situ data acquired by several different instruments during several
different field projects to develop a database that describe aspect ratio,

particle habit and projected area and mass

— McFarguhar, Mitchell, Um, Dong

— vyears 1-2 and continuing

Status

1.

Development of single-particle database from multiple flights during
ISDAC, TWP-ICE and SPARTICUS to describe how dimensions, habits and
aspect ratios vary with temperature and geographical location (Um et
al. 2014, ACPD)

Intercomparison of several different optical array processing codes to
assess differences in projected area and particle size derived from the
same data set (McFarguhar et al. 2015, In preparation for AMT)

Intercomparison of different automated habit classification schemes
from different groups (Um et al. 2015, In preparation)
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~ ASR Dimension and aspect ratio database of ice crystals

System Research
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s @ ¥ Atmospheric Junshik Um & Greg McFarquhar / University of Illinois

Science Question

How microphysical properties (e.g., dimension &
aspect ratio) of ice crystals vary as a function of
temperature, habit, and geophysical location?

Approach

* Use high resolution images of ice crystals
acquired by state-of-the-art cloud probes
installed on aircraft flying through ice clouds
during TWP-ICE, ISDAC, and SPARTICUS

* Determine dimensions & aspect ratios of ice
crystals using newly developed software, the
Ice Crystal Ruler (IC-Ruler)
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L-W relationships from previous studies (left) and newly
determined (right) using current data (gray dots)

Key Accomplishment

The first time to show L-W relationships from previous
studies are within the range of current data obtained
from the same probe and analyzed in consistent manner.
All dimensions and L-W relationships of ice crystals
depend heavily on temperature, but aspect ratio depends
weakly on temperature.

Publications

Um and McFarquhar, ACPD (2014)



System Research

ASR Comparing derived measures of particle morphology from
iy | different probe processing algorithms
8 @  Atmospheric Greg McFarquhar and several others, University of Illinois

Science Question

How do morphological measures of ice crystals
(maximum size, projected area, etc.) vary with
algorithm used to process data, and what are
uncertainties in derived parameters

Approach

* Process data file obtained during field project
with codes developed by several groups and
compare derived particle morphology

* Do same for data file developed to describe
simulated spherical particles
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Frequency of occurrence of particles with given D, ., and area
ratio for 2 different processing codes; differences associated
with differing definitions of D,

Key Accomplishment

The first time to differences in particle morphology from
different processing codes, which places uncertainty on
derived dimensions; effect of different definitions of D,
on particle sizing, and on derived m-D and A-D relations
also illustrated

Publications

McFarquhar et al. 2015 AMT; Wu and McFarquhar 2015 JAOT



o) ASR Uncertainties in habit distributions of ice particles
’4‘ Atmospheric

Systern Research Junshik Um & Greg McFarquhar and others University of Illinois
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Science Question
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Approach

* Use CPI ice crystal images from various field
campaigns in different habit recognition
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Key Accomplishment

0.3 * o=0.23LWC/TWC +0.65, R = 0.60

Uncertainty in phase identification better understood, as
well as showing liquid vs. ice can be distinguished for D >
35 um and focus > 40 for CPI probe.

Publications

, & £ - 5
Exampléuae napits used 1n classirication
schemes: spheres (a-c), columns (d), plates (e),
bullet rosettes (f), aggregates (g-i) , capped columns
(), irregular (k) Um et al. 2015 ACD; McFarquhar et al. 2013 JAOT




D2: Characterization of ice particle properties on environmental
conditions

— Characterize how mean and distribution functions of PSDs, mass-dimension
relations, area-dimensional relations, IWC, B, mean aspects ratios and total

ice particle concentrations vary with environmental conditions, as well as
characterizing uncertainties in these relationships and uncertainties due to
processing/measuring of microphysical quantities

— McFarguhar, Mitchell, Um, Dong

— continuing all 5 years owing to large amount of past and future data

Status

1. Development of m-D and A-D expressions that capture the non-linear

dependence of log m & log A on log D. Expressions depend on temperature
and cloud type.

- Relevance to modeling & QUICR

2. Evaluation of the accuracy and uncertainty of these m-D and A-D expressions.
- Relevance to modeling & QUICR

3. Translation of these expressions into m-D & A-D power laws based on PSD
moments of interest.
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ICEPRO Deliverable D2 (continued)

4. New treatment for modifying the m-D and A-D power law terms (prefactor &
exponent) as a function of riming, based on field measurements of unrimed
and heavily rimed dendrite masses, and hexagonal graupel masses.

- Relevance to mixed phase clouds focus group

5. Use of area-ratios to evaluate consistent changes in ice particle shape (which
occur around -55°C) in synoptic and anvil cirrus clouds.

6. Development of new technique for quantifying uncertainty in representation
of PSDs as gamma functions by describing (N, A,4) as volume of equally
realizable solutions based on statistical uncertainty in measured SDs

7. Assessment of uncertainty in PSDs derived from optical array probes through
comparison of processing algorithms applied to same dataset and to
artificially simulated spherical particles

8. Derivation of how mean morphological properties (D, aspect ratio) of ice
crystals vary with environmental conditions for SPARTICUS/TWP-ICE/ISDAC

9. Derivation of how PSDs, representations of PSDs and bulk parameters vary
with environmental conditions for MC3E data
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Dependence of cloud properties on environmental
properties: results from MC3E

mf“ Atmospheric
4 Wei Wu & Greg McFarquhar / University of Illinois

System Research

Science Question

How do bulk microphysical properties (e.g., IWC,

r,, N,.) vary with environmental conditions
(e.g., temperature, supersaturation, vertical

velocity, turbulence) during MC3E flights?

Approach

* Use data from 4 MC3E flights (18, 20, 23 and
24 May) to show how statistics of bulk cloud
properties vary with environmental
parameters

* Compare with results from other field
projects, and with results of model simulations
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Ongoing Activities

Integrating work from PSD intercomparison project to
have more accurate PSD estimates; deriving volumes of
equally realizable solutions to characterize PSDs as
gamma distributions in (N,,4,4) phase space; this will
also allow estimates of m-D and A-D relations, and
determination if PSD /bulk parameter dependence on
environmental conditions consistent between models

and observations



Riming treatment in a snow growth model

04‘ Atmospheric
(3 System Research

s .

J

Ehsan Erfani & David Mitchell / Desert Research Institute & U. Nevada, Reno

Science Question

How can ice particle mass- and area-
dimension (m-D & A-D) power laws
be expressed as a function of riming?

Approach

e Used m-D field measurements to show that
only a is affected by riming, where m = a DB,

*Used m-D field measurements to show that
maximum projected area from riming is
attained at hexagonal graupel stage where
m, /m, = 3.5 (r => rimed; u => unrimed).

o/, = IWC/IWC, (D>150 pm)

* A= (Apa - AJR+ Ay R = (M-M,)/(M
M ..,=35M, ;MM

*A,.. =Kk (m/4) D?; k = attenuation factor
sA=yD3;if §,= 8, theny=A/D?
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Results from the snow growth model featuring the new
treatment of ice particle riming. Different curves show
different combinations of growth processes (diffusion,

diff. + aggregation, diff. + riming, & diff. + agg. + riming.

Key Accomplishment

New riming treatment was incorporated into a snow
growth model that can be used in conjunction with
radar reflectivities to retrieve the IWC in ice clouds.
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D3: Radiative closure studies from ISDAC

— rigorously determine degree to which radiative closure exists using available
ISDAC cloud microphysical data and surface shortwave irradiance

measurements at NSA
— Lubin, McFarquhar, Fridlind, van Diedenhoven, Mitchell

— years 1-2

e Status

— DISORT-based radiative transfer model configured for mixed-phase
clouds and 179 bands in shortwave, clear-sky fluxes validated against
MODTRAN.

— ISDAC April 8 “Golden Day” selected for first radiative closure study.

— Code is ready to ingest NASA-GISS microphysical simulations and
complete study by early 2015.
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ISDAC 08 APR 2008 Spectroradiometer Retrievals

 Moderate cloud optical depth, N = 435 spectra once per minute
e Supplemental ice absorption is relative to liquid water cloud with same optical depth

10

cloud optical depth
=

0.1

—
T

llllllll

—=— cloud optical depth
I D

A

e 14
12
10

(3]
W) v

L '1_- 2

<1 0
PO (R T

8.75

8.80 8.85 8.90

9.00 8.05 9.10

day number of April 2008

Lubin and Vogelmann, JGRd, 2011
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ISDAC 08 APR 2008 Spectroradiometer Retrievals

_ _ ISDAC Shortwave Spectroradiometer Retrievals
* Supplemental absorption by ice _— . . .
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4

Microphysical Simulation for “Golden Day’
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 Mode Ice abundance is “10% of cloud total water content by mass

e Simulated cloud is somewhat uniform in total water content

* |ce optical properties from van Diedenhoven et al., 2014, J. Atmos. Sci.
e Liquid water properties directly from Mie theory
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Test RT Result Using Simulation Input
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RT Closure Sample Calculation
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Single “test pixel” selected for being near mode in ice abundance
Liquid water cloud optical depth 11.4, high compared with spectroradiometer retrievals
Liquid water r(eff) increases from 3 to 8 microns between 820 = 1100 m altitude

Ice water optical depth ~0.43; ice extends from 1100 m (cloud top) nearly down to surface

In this sample, total supplemental ice absorption only ~1.3 W m, is it representative?
One spectral calculation runs in 14.5 s on MacBook Pro
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D4: Radiative closure studies using data from SGP

— rigorously determine degree to which radiative closure exists using available
surface, remote sensing and in-situ measurements collected over the SGP site

— Mlawer, Mitchell, and Dong

— begin in year 1, most work in years 2 and 3 and continuing as data becomes
available

 QObjectives of our study

- Use newly deployed zenith-pointing shortwave radiometers (SAS-Ze, SWS) at
SGP for spectral closure studies

- Evaluate ice optical property parameterizations (e.g. Yang, Mitchell)

e But first ...
— Instruments must be calibrated, characterized, and validated
— Clear-sky radiative closure
— Aerosol radiative properties need to be better understood

e Current status

— SAS-Ze, SWS, SAS-He clear-sky measurements for 3/9/14 and 3/19/14
received 2 weeks ago, supporting data being gathered for initial closure study
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D4: Importance of clear-sky validation

e C(Clear-sky radiative closure determined that original SWS had
serious design flaw (stray light from direct solar beam)

SWS SGP: 20061011.173000

0.07 .
SWS =

g% CHARTS —
E 0.05 _2
2 005 SWS: R(500 nm)/R(1000 nm) =2.2 -
£ o0 Calc: R(500 nm)/R(1000 nm) =13.0 -
& 0.01 E
| SOV

1000 1500 2000
Wavelength (nm)

from presentation by Delamere et al. (2008)
* Inresponse, a sun shade was added to the SWS after 2011.

e And ARM deployed new hyperspectral instruments: SAS-Ze and SAS-He
measuring zenith radiance (SAS-Ze) and direct and diffuse hemispheric
irradiances (SAS-He) from 350-1700 nm.
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D4: SAS-Ze and SAS-He deployments

MAG*
MAG*
2013
MAG*
2014
2015 SGP SGP** MAO MAO**
* SASZe with baffle tube ** §ASZe with shorter baffle
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SASHe QA,

“filterband” irradiances, AODs
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SASZe QA: compare with NFOV, Cimel radiances

PVC radiances from SASZE and Cimel cloud mode
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D4: Better SAS-Ze QA? Closure study with model!

Previous comparison at SGP:
SWS: R(500 nm)/R(1000 nm) =
Calc: R(500 nm)/R(1000 nm) =13.0

SASZe zenith radiance, PVC 2013-01-28 14:07

40 e S _CCD |
—_InGa_As
30} | R(sod nm)/R(1000 n-m) = ~7 ------------------ --------- ]

radiance [Wl(m2 um sr)]
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Ot
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D4: SAS QA, known and potential issues

Most of the instrument characterizations could be improved.

The following limitations are acknowledged:

Both systems:

e Linearity vs well-depth: measured, not applied
e Wavelength registration could be refined

e Stray light within spectrometer: corrected?
SASHe only:

e Diffuser temp effects: measured, not applied

e Irradiance calibration ignores gases

SASZe only:

* Radiance calibration frequency too sparse

SGP SAS-He 20131019
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e Observed discrepancies in collocated radiances during MAG. (Vibration?)

Radiative closure analysis will be important in ensuring and
improving measurement quality and establishing confidence

thresholds.
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D5: Demonstrate impact of improved ice properties on retrievals

— use aircraft in-situ measurements to evaluate ground- and space-based
retrieved ice cloud microphysical properties

— Dong

— ground-based retrievals in year 1, satellite retrievals in years 1 and 2

Status

— The ice cloud microphysical properties of the DCS cases during MC3E have been
collected by the University of North Dakota Citation Il research aircraft and processed
by Xiquan Dong’s group at UND.

What the deliverable was

— The best-estimated ice cloud Dm, Nt, IWC, and PSD, as well as the empirical relations
(gama-distribution) for remote sensing and modeling community.

What can be improved

— If DMT Counterflow Virtual Impactor (CVI) were available, then a more reliable IWC
could be provided because CVI can account for a broader range of PSDs.

— If Cloud Particle Imager (CPI) probe worked well, then more ice crystal images would
be observed.

What are the plans for the future

— We will work on mixed-phase clouds, and quantitatively estimate LWC/IWC, re/Dm, N
values of mixed-phase layer of DCS using aircraft data during MC3E.
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Using multi-sensor measurements to determine Ice Phase
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Number Concentraion [cm™]

Constructed a full spectrum of PSDs and derived Gama-Dist.

NEXRAD Cross-section Ze & Classification 5/20/2011
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Developing a new mass-dimension relation
IWC= f max N(DYm(D)dD = f max N(D) - a - D?dD

min mm

Ste PS: ____ NEXRAD Cross-section Ze & Classification 5202011

1) Using the conclusions from
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Developing empirical relations for remote sensing community

For application of observed PSDs to remote sensing and modeling
community (such as, development of retrieval algorithm), a series of
empirical relationships between fitted parameters and Z_ values has
been derived as follows:

10 ey N (D) = Ny D¥ e~

Gama-type-size-distribution
6) D)
B0 & [
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D6: Development of ground-based remote sensing techniques to
infer ice particle habit information

— Improve assumptions that go into ground-based remote sensing retrievals

and determine impact on ability to infer particle habit information
— Dong
— years 1-2

Status

— A new method has been developed to retrieve ice cloud properties of DCSs
during MC3E using NEXRAD reflectivity and aircraft derived empirical relations.

What the deliverable was

— Preliminary 3D ice cloud properties (Dm, IWC) are available for ASR
community, and these retrievals have been validated by aircraft results.

What can be improved

— The new method will be modified through T-Matrix and updated relation: Nt
vs. cloud temperature and other variables.

What are the plans for the future

— How to use radar reflectivity and Doppler velocity to infer ice particle habit.
Question: Can we determine air velocity?
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How can we use aircraft results to improve ground-based ret

During the retrieval process, people
have to assume one of the ice
crystal shapes.

From aircraft CPl images (May
23/24 case), aggregates of bullet
rosettes, planes, and columns were
observed to be the dominant ice
crystal habits.

Therefore we need to determine
which one should be used in
ground-based retrievals.

rievals

] P

Ny
I ey |

« 100 microns

* NEXRAD reflectivity
- Calculated NEXRAD Ze using 60 1
aircraft measured PSDs and 50
Bullet Rosette backscattering vy

relation, and aggregate. A "
« Conclusion: Bullet Rosette

backscattering relation is ¢

used in radar retrievals. 10F

70 v

== NEXRAD_dBz
s Bl rosolto_dBz
w— Aggrogate_dBz

|
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3D ice cloud Dm and IWC retrievals from NEXRAD

NEXRAD Ze 14 UTC 8km
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Validation of radar retrievals using aircraft

results

May 20 Case
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Using Doppler cloud radar to study microphysics and dynamics of ice clouds

Observation: Doppler velocity V + radar reflectivity Z of ice clouds with 35 GHz cloud radar (MMCR)

4

Decomposition: V into particle terminal fall velocity V,andin-cloud vertical air motion w (V4= V; + w)

4

Climatology: V; and w at SGP (1997-2010) & Manus (1999-2010) as daily netcdf at
(see Kalesse & Kollias, J. Clim., 2013)

l v

+ Variability of profiles of V, = a Z*b indicate different
microphysical regimes (nucleation + deposition,
aggregation, riming)

« Exponent b can be expressed in terms of PSD
moments M

*  b>0 (<0): larger moments grow more rapidly (slowly)
than reflectivity-corresponding moment (Mg)

b =0 isradar-observed near cloud top where
nucleation + deposition occur
— Empirical relations in microphysical

parameterizations do not reproduce b < 0 and could thus

be adjusted to better represent conditions near cloud top

(see Kalesse, Kollias, Szyrmer, JGR, 2013)

wl§

Statistical comparison (PDFs) of w and
dissipation rates ¢ derived from MMCR
and in-situ aircraft measurements

two SPARTICUS anvil cirrus cases (SGP,
2010) studied, serves as validation of
radar-derived dynamics

w : good agreement for w < 0.5 m/s

€. agreement within 1 order of magnitude
more detailed and direct comparisons are
needed for various environmental
conditions at tropics and midlatitudes

(Muhlbauer, Kalesse, Kollias, revised version
submitted to GRL)

w % McGill

www.clouds.mcgill.ca




D7: Upgrade CAM5 microphysics to make it self-consistent

— make the CAMS5 microphysics self-consistent by using improved mass-

diameter and area-diameter expressions to formulate the processes

— Morrison, Mitchell, Eidhammer

— emphasized in years 2 and 3

Status

Modified CAMS5 microphysics to combine cloud ice and snow into a single
ice category (done)

Incorporated observed particle m-D and A-D relationships to calculate all
relevant processes and parameters using a lookup table approach (done)
Add an additional dependency of the m-D and A-D relationships to
temperature (ongoing)

Test in single-column and global model frameworks against observations:
microphysics + standard climate diagnostics (ongoing)

DOE ASR Fall Meeting ¢ ICEPRO Focus Group Breakout ¢ 19 November 2014



Motivation

Point 1: Having cloud ice and snow as separate categories is
inherently artificial and necessitates having an “autoconversion’
process representing growth of ice particles from vapor
deposition, riming, aggregation = the autoconversion size
threshold (Dcs) is one of the important tuning knobs in CAM5
but is not constrained by theory or observations

4

Point 2: The particle m-D, A-D, and V-D relationships are not
self-consistent 2 model assumes reduced density spheres for
some processes but other habits for others (fallspeed)
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Description of the approach

e Combine cloud ice/snow into a single ice category

e Use m-D and A-D relationships from observations (Mitchell et al.
2014) as a function of temperature and apply self-consistently
for all processes and parameters for all particle sizes

e Because of the form of the m-D and A-D relationships, analytic
integrations over the PSD are no longer possible = use
numerical integration to calculate relevant PSD moments and
store values in a lookup table as a function of qi, Ni, and
temperature

e Represents part a broader trend in microphysics schemes
improving representation of ice particle properties and moving

away from pre-defined categories (Hashino and Tripoli 2007; Morrison and

Grabowski 2008; Harrington et al. 2013; Sulia et al. 2013; Morrison and Milbrandt
2014)
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SPARTICUS SCM simulations
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Refining ice nucleation parameterization in CAM5

Shi X., X. Liu et al., ACPD, 2014

e Consider preexisting ice crystal effect on ice nucleation in cirrus clouds
* Introduce in-cloud variability of ice saturation ratio due to temperature fluctuation
* Remove two limiters (upper limit of subgrid updraft velocity and lower limit of sulfate
aerosol size) used in the ice nucleation parameterization in cirrus clouds
Results:
Improve comparison with ice microphysics observations (e.g., SPARTICUS) with small mean
climate state changes from the default CAMS5 model

Weub 36.6N,97.5W N i 36.6N,97.5W
a100:"I"I"I“I"I",I': ? HEM R R S SR
5 ; Default Preicef S 0.15 1

-1 T u i

% 107 1 OBS | §0.12 1

o) ] o 0.06 A

2 10—3 4 5 2 |

I : L o 0.03 1
x 107 -----------.--—n-..-'."—'t > 0.00 F———F———"—"r
0.0 0.5 06 09 1.2 1.5 1.8 109 10! 102 103

Vertical velocity (m s™') lce number concentration (L7")

Comparison of PDF of sub-grid updraft velocity (W, ) & in-cloud ice number (Ni) with SPARTICUS observations
(OBS) over ARM SGP. Model results output 3 hourly from Default & updated model (Preice)
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Outlook and issues for discussion

 Adding prediction of particle properties, e.g., crystal axis ratio
and density following Harrington, Sulia et al., rime mass, etc.

e Coupling with other aspects — improved ice nucleation,
microphysics in convection parameterization (and detrained ice),
coupling with macrophysics

e What existing datasets do we have for model evaluation and
further parameterization development, that are not being used?

e What observations are still needed — both in terms of 1)
additional particle properties we aren’t currently measuring, 2)
better characterizing the properties that we’re already
measuring?

* What is the role of variability in ice parameters, both locally (in a
grid box) and regionally?
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D8: Evaluate high-resolution simulations of MC3E systems

— compare high-resolution model simulations of MC3E deep convective
precipitation systems with radar and aircraft measurements

— Tao, McFarquhar, Fridlind, Dong

— emphasized in years 1 and 2

e Status

— 3D simulation groups have some differing focus areas
— team with simulated ice particle melting studying roundness (MC3E 4/27)

— Xue, Lebo, Fan, Bansemer, Geresdi, North, Morrison, Rasmussen,
Thompson, Grabowski, Kollias, Heymsfield

— roundness as an indicator of meltwater content
— team using fixed ice properties focused on outflow PSDs (MC3E 5/20)
— Fridlind, Wu, Li, Tao, Ackerman, Dong, Wang, McFarquhar, Wu
— PSDs in large stratiform areas during MC3E (well sampled)
— establishing ice properties as a fn of size (difficult)

DOE ASR Fall Meeting ¢ ICEPRO Focus Group Breakout ¢ 19 November 2014



Height (km)

Saturation ratio

20 —

15

10

1.10

1.00

0.90

0.80

0.70

RH (%)

| Low relative humidity region

-4

I T T I I

-2 0 2 4 6
Temperature (C)

4000y

5.92x10

5.85%10% 596x10% 5.97%10

P I
5.94x10%
Time (seconds)

5.93x10*

Saturation ratio

(] —
© o
o

o
o'y
S

e
\l
o

RH (%)

High relative humidi

ty region

-6

4

-2 0 2 4 6

Temperature (C)

60—

4000y

sE7x10

3 86x10%

385%10% 3.84x10% 3.83x10% 3.82x10"
Time (seconds)

64
48
32
16



Diarneter {microns)

Digmeter (microns)

High relative humidity region

OBS

04/27 /2011

10800

1000 £

T
—L
=]
3
5
2
- %
[a
_+
=]
3
5

.........................................................
327x10* 3aex10* Fa8sxiot 384xi10t 38310 Fazxant
Tirmne (=)

10000 |

1000 £

Fg7x10* A8ex10* 3esxio® 3aeao® 383xin0* 38ezxiot
Tirme (=)

10 22500
108 8500

S 3600
= 1300
© 512

125

as 22500
8500
3600
1300
512
125

0.6

=)
IS
Areg Ratio

o
IS

Q.0

*Ar*éahratio

Temperature (C)

—_
o

N WL N




20110520 morrison iwc(0.8-1.0) 20110520 morrison iwc(0.8-1.0) 20110520
0.14[ T y 5 ] 0.14[ y i ] 30 v T y y y
2 “tation 2 “tation 2sf citation ]
et 5.8km e 4 e 6.7 km -
< 010f 3 < 010f 3 S g
£ 1 £ X 1 E
i“:' 0.08 - b i‘: 0.08 - b :5:'
P~ i ] P~ i ] z
Ei 0.06 1 Ei 0.06 1
% 0.04 - — % 0.04 - “
s 1 1 0.0 . K . R R
0.02 - E 0.02 - E S000 5300 600D 6300 7000 7500 800D
000t P T 000t ey 9 Height (m)
20110520 morrison iwc(0.6-0.8) 20110520 morrison iwc(0.6-0.8) 20110520 morrison
0.14[ T y 5 0.14[ y 5 ] 10 . . . .
0.12 u riluli‘(m ] 0.12 u riluli‘(m —: 25F 4
< oaof 3 < oaof 3 @
f, s ] :5:, ] E
# 0.08 3 ] # 0.08 3 E :5:-
=) L 3 =) L 3 z
Ei 0.06 1 Ei 0.06 1 =
% 0.04 - — % 0.04 - “
0.02 - _ 0.02 - E 000 5500 6000 6300 TOOO 7500 800D
0.00 I A TS P e " 0.00 Height (m)
20110520 morrison iwc(0.4-0.6) 20110520 morrison iwc(0.4-0.6) 20110520 morrison iwc(0.4-0.6)
0.14[ y 5 ] 0.14[ y 5 ] 0.14[ T y 5 ]
oi2f gl oi2f gl oi2f 7.5 km e
< oaof 3 < oaof 3 < oaof 3
£ [ ] £ [ ] £ [ ]
i“:' 0.08 - b i‘: 0.08 - b i‘: 0.08 - b
‘gn 0.06 - . ‘gn 0.06 - . ‘gn 0.06 - .
% 0.04 - . % 0.04 - . % 0.04 7
= 4 = 4 = §
0.02f 3 0.02f 3 0.02f 3
0.00F o o e . ] 0.00F it b DPea ] 0.00 £ . . ]
20110520 morrison iwc(0.2-0.4) 20110520 morrison iwc(0.2-0.4) 20110520 morrison iwc(0.2-0.4)
0.14[ T y 5 ] 0.14[ T y 5 ] 0.14[ y 5
o.a2f “tation ] o2f “tation ] o2f “tation ]
< 010f ] < 010f ] < 010f ]
£ [ ] £ [ ] £ [ ]
i“:' 0.08 - b i‘: 0.08 - b i‘: 0.08 - b
‘gn 0.06 - . ‘gn 0.06 - . ‘gn 0.06 - .
% 0.04 - . % 0.04 - . % 0.04 7
= 4 = 4 = §
0.02f 3 0.02f 3 0.02f 3
0.00 E s ] 0.00 £ : . ] 0.00 £ : . ]
100 1000 10000 100 1000 10000 100 1000 10000
Central Bin (um) Central Bin (um) Central Bin (um)

DOE ASR Fall Meeting ¢ ICEPRO Focus Group Breakout ¢ 19 November 2014




dM/dlogD (g/cm ™ 3) dM/dlogD (g/cm ™ 3) dM/dlogD (g/cm ™ 3)

dM/dlogD (g/cm ™ 3)

L5x10°*

1.0x10°*

50x107

L5x10°*

1.0x10°*

50x107

L5x10°*

LOx10° +

50x107

L5x10°*

1.0x10°*

50x107

20110520 morrison iwc(0.8-1.0)

morrison
citation

20110520 morrison iwc(0.6-0.8)

morrison
citation

> S
Lo L

20110520 morrison iwc(0.4-0.6)

morrison
citation

o

20110520 morrison iwc(0.2-0.4)

morrison
citation

Central Bin (um)

dM/dlogD (g/cm ™ 3) dM/dlogD (g/cm ™ 3) dM/dlogD (g/cm ™ 3)

dM/dlogD (g/cm ™ 3)

L5x10°*

1.0x10°*

50x107

L5x10°*

1.0x10°*

50x107

L5x10°*

LOx10° +

50x107

L5x10°*

1.0x10°*

50x107

20110520 morrison iwc(0.8-1.0)

morrison
citation

Lo L e Kok,

20110520 morrison iwc(0.6-0.8)

morrison
citation

L L

20110520 morrison iwc(0.4-0.6)

morrison
citation

20110520 morrison iwc(0.2-0.4)

morrison
citation
100 1000 10000

Central Bin (um)

dM/dlogD (g/cm ™ 3)

L5x10°*

LOx10° +

50x107

20110520

30 i
a5k citation ]
s 3
<
E
= 15f Y e
2 ; OO
Z 10 B s
s ﬁ;“ I‘WJ’L:@,
0.0 . . : . .
S000 5500 600D 6300 TDO0 7500 8000
Height (m)
20110520 morrison
30 " " "
25f >
= 20f : 3
<
E i
2 15f e
[
Z 10
05| ‘ ‘
0.0
S000 5500 600D 6300 TDO0 7500 8000
Height (m)
20110520 morrison iwe(0.4-0.6)
7.5 km e
100 1000 10000

Central Bin (um)

DOE ASR Fall Meeting ¢ ICEPRO Focus Group Breakout ¢ 19 November 2014




D9: Determine modeling impact of new ice property
parameterizations

— implement the new parameterizations of ice particle properties into models

targeting various scales and report impact of new schemes on cloud
microphysical and radiative properties and radiative forcing

Fridlind, Harrington, Morrison

all 5 years with concentration on different environments in different years

e Status

— Kara Sulia/Matt Kumjian: Evolving ice habits, comparisons with radar.
— Anders Jensen/Harrington/Morrison: Evolving ice habits during riming
— Hugh Morrison: Determining impact of new ice parameterizations

— Ehsan Erfani/David Mitchell: Riming in a snow growth model
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- Ice Habit and Density Evolution in LES -

Approach:

* Using polarimetric radar data to test
a bulk habit evolution model that
evolves aspect ratio, mean density,
size, and fall-speed instead of
separating ice into a cloud ice and
snow category as in most models.

Unique Features:

* Smooth evolution of aspect ratio
(isometric to developed habit) and
density that are tied to mass and fall-
speed evolution

* Differential reflectivity dependent
on density (dielectrics). Important
test of model’s density prediction.

* Captures the parameter space of
reflectivity (size) and differential
reflectivity (shape).
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- Riming Prediction for Evolving Habits -

Jerry Harrington, Anders Jensen (Penn State)

Approach: Hugh Morrison (NCAR)

. : i T 1 T 1 1 1 Plate-like
* Extend habit prediction model for s .
riming. Instead of a separate rimed 15F-
category, model evolves particle mas§&E i 1
aspect ratio, density, and fall-speed f L N i
during riming. 8 |- =
* Theory developed that compares - TR ——— -
well to wind tunnel riming 0 a0 — :; 3 . 2(')0 : 25' 0 . 31'10 : 3éo =3 on
measurements. X {kmi
Unique Features: .

[
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riming. é 10
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Hugh Morrison / National Center for Atmospheric Research

e d ) Grants: DOE ASR DE-SC0008648 (PI: Wojciech Grabowski, NCAR)
& @ » Atmospheric DOE ASR DE-5C0005336 (PI: Eric Jensen, NASA)
03 System Research
o Horizontal cross-sections of radar reflectivity at t= 6 h for quasi-
ICEPRO Deliverable D9: idealized simulations with various microphysics schemes in WRF and
Determine modeling impact of new ice observations for the 20 June 2007 Oklahoma squall line
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of the particle properties

* Better coupling with observations
* Computationally efficient

Future work

* Test for ARM case studies (MC3E, GO-AMAZON);
couple with polarimetric radar simulator
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> ASR Riming treatment in a snow growth model

o &
L 4 Atmospheric

System Research  Ehgan Erfani & David Mitchell / Desert Research Institute & U. Nevada, Reno

Science Question

How can ice particle mass- and area-
dimension (m-D & A-D) power laws
be expressed as a function of riming?

Approach

e Used m-D field measurements to show that
only a is affected by riming, where m = a DB,

*Used m-D field measurements to show that
maximum projected area from riming is
attained at hexagonal graupel stage where
m, /m, = 3.5 (r => rimed; u => unrimed).

o/, = IWC/IWC, (D>150 pm)

* A= (Apa - AJR+ Ay R = (M-M,)/(M
M ..,=35M, ;MM

*A,.. =Kk (m/4) D?; k = attenuation factor
sA=yD3;if §,= 8, theny=A/D?
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Results from the snow growth model featuring the new
treatment of ice particle riming. Different curves show
different combinations of growth processes (diffusion,

diff. + aggregation, diff. + riming, & diff. + agg. + riming.

Key Accomplishment

New riming treatment was incorporated into a snow
growth model that can be used in conjunction with
radar reflectivities to retrieve the IWC in ice clouds.



D10: Develop framework for translating uncertainties in ice particle
properties to model output

— develop a framework for translating uncertainties in ice particle properties to

uncertainties in modeled cloud and radiative properties and radiative forcing
— Fridlind, Harrington, Morrison, McFarquhar, Dong and Mitchell
— develop of framework in years 1-2, testing in subsequent years

e Status

— preliminary studies using bin microphysics in SPARTICUS case (Fridlind et
al.) use typical and perhaps inadequate approach of varying ice
properties using a single case study

— Framework for quantifying uncertainties developed to quantify fit
parameters as surfaces of equally realizable solutions (McFarquhar et al.
2014 for gamma distributions)
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SPARTICUS bin microphysics (Fridlind in prep.)

— ice properties and ice nucleation scheme both influence cirrus number concentration
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ASR

o

Representing uncertainty of PSDs in a gamma function

Atmospheric

®d
(3 System Research

& -

o+

Greg McFarquhar / University of Illinois

Science Question

How can we describe the uncertainty in the
gamma function N(D)=N,D+e~*P that is used to
represent PSDs in models & retrieval schemes?

Approach

*Using ISDAC & NAMMA data developed IGF
technique that identifies all (NyA,pu) within Ay?
of y,;,> Minimizing difference of fit and observed
moments, as equally realizable solutions

* Represent intersection of solutions from
individual PSDs as ellipse in (Ny,A,1) phase space
in order to apply in Monte Carlo simulations
using random gamma parameters
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Volume of equally realizable SSlutions in (NpA,1)
phase space for all PSDs measured during ISDAC

Heymsfield et al. 2002
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—DIGF

. —— Standard Gamma Fit
— Normalized Gamma Fit|

ol 2(')]0 500 1000
um
Single PSD measured during ISDAC, together with different

fits randomly taken from volume of equally realizable

20 50 100

solutions (green lines); other lines represent PSD
representation using different fit techniques
Key Accomplishment

Method developed for representing uncertainty in fit
gamma functions that can easily be applied in models,
and that forces integrated moments of PSD to match
those observed as close as possible; technique being
applied to PSDs measured in many campaigns to see how
PSDs vary with meteorological conditions

Publications McFarquhar et al. JAS (2014)
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D11: Linking ice optical properties with microphysical observations

— link ice optical properties computed from models and scattering codes with
microphysical observations such as PSDs

— Williams, Nesbitt, McFarquhar, van Diedenhoven, Fridlind, and Dong

— starting in year 1 and continuing

e Status
— team using bin microphysics
— Fridlind, van Diedenhoven, Ackerman, McFarquhar, Um, et al.

— getting past power law relations through direct analysis of single-
particle databases starting with SPARTICUS

— integrating geometric models with available data (expanding but still
limited in handling of single-particle mass, irregularity, small crystals)

— deriving differing aspect ratios relevant for microphysical process
rates versus optical properties
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A flexible parameterization for shortwave optical properties

Bastiaan van Diedenhoven, Ackerman, Brian Cairns and Ann M. Fridlind
J. Atmos. Sci., 71, 1763-1782, doi:10.1175/JAS-D-13-0205.1.

Yields single scattering albedo and
asymmetry parameter for single ice crystals

with any combination of
— Volume
— Projected Area
— Aspect ratio of crystal components
— Crystal distortion/roughness level

— At any wavelength in the shortwave (0.2 -4
micron)

Uses only 88 coefficients

Accuracy is comparable or better than
existing, less flexible schemes

Computes optical properties consistent with
ice microphysical properties assumed in
models

Distortion

Distortion

Computer code available at
http://www.columbia.edu/~bv2154/parameterization.html
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o
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Figure shows variation of fluxes for clouds with
varying crystal aspect ratio, distortion and
effective diameter calculated using new scheme



van Diedenhoven et al. (2013)
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Bullet rosettes

force branch width to zero at a
fixed “core” size

assume that early branch width
increases linearly from same
number of branches

A < 0.25*SA (as expected)
calculate mass
solid line mass, area for 6 arms

compare with bulk spheres
(dashed), Mitchell et al. [1996]

(dotted), Heymsfield et al.
[2002] (dash-dotted)

randomly oriented D

Preliminary data courtesy
Greg McFarquhar, Jun Um, and Sun Kim
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SPARTICUS

Preliminary parcel model results
Rachel Atlas, Ann Fridlind, Andy Ackerman
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D12: Determine gaps in existing microphysics databases

— identify any gaps that still exist in ice cloud property database and
parameterization, possibly conducting or proposing additional field or

laboratory measurements that are needed to fill in these gaps

all participants

ongoing through year 5

e Status

— team using bin microphysics focused on extracting additional data from past
field experiments relevant to processes

Fridlind, van Lier-Walqui, van Diedenhoven, Ackerman, McFarguhar, Um,
Wu, Dong, Wang, et al. (MC3E, SPARTICUS)

fraction of aggregates as a function of size and distance from cloud top
aggregate component properties (size-dependence of aggregation?)
multi-mode PSD fits

complete and quantitative ice properties as a function of ice type (not
power laws, may include dispersion as a fn of mass): mass, maximum
dimension, projected area, total and component aspect ratios
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New and future field activities

e Polar Ocean campaigns (MOSAIC, SOCRATES)
— high frequency of mixed-phase clouds, but only sparse measurements

— seasonally varying aerosol conditions may impact ice and liquid
nucleation

— low concentrations of classic ice nuclei (e.g. dust), with hemispheric
differences
e Arcticcirrus
— gap inice property measurements of clouds colder than -40°C
— need this information together with aerosol measurements
— may expect more homogeneous freezing away from dust sources

* Ground-based MASC instrument
— continuous ice property measurements at NSA
— improved multi-instrument retrievals
— expanded single-particle data for model development
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