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Warm Clouds

* No ice

* Within the boundary layer—certainly below 5-km
e Marine and continental

e Seasonal

Suppressed environments favorable for low
clouds
significant (but not overwhelming) subsidence
(1 - 3 ubars™1)
adequate BL water vapor
source of BL TKE
saturation beneath inversion




MARINE BOUNDARY LAYER

Bulletin of the American Meteorological Society: CAP-MBL

Clouds, Aerosol, and Precipitation in the Marine Boundary

Layer: An ARM Mobile Facility Deployment

Capsule: A 21-month deployment to Graciosa Island in the northeastern Atlantic Ocean is
providing an unprecedented record of the clouds, aerosols and meteorology in a poorly-
sampled remote marine environment

Robert Wood?, Matthew Wyant!, Christopher S. Bretherton?, Jasmine Rémillard®, Pavlos
Kollias?, Jennifer Fletcher!, Jayson Stemmler?, S. deSzoeke3, Sandra Yuter*, Matthew Miller?,
David Mechem?®, George Tselioudis®, Christine Chiu’, Julian Mann’, Ewan O’Connor”*8, Robin
Hogan’, Xiquan Dong®, Mark Miller®, Virendra Ghate®, Anne Jefferson®®, Qilong Min'?, Patrick
Minnis?, Rabindra Palinkondal®, Bruce Albrecht!*, Ed Luke®, Cecile Hannay*®, Yanluan Lin*’



MESOSCALE CELLULAR CONVECTION

Pockets of Open Cells
POCS
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Case I: Closed cell Case IT: Open cell
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FIG. 2. (top) True color images from MODIS onboard Terra taken around 1315 UTC and spanning about 500 km
in both dimensions centered at the location of Graciosa Island (shown in red circle). (left) A stratocumulus cloud case
(22 Nov 2009) and (right) a broken cumulus (0300-0600 UTC) and cumulus with stratocumulus (1800-2400 UTC)
cases (30 Aug 2010). (bottom) The corresponding daily WACR time-height reflectivity observations with the first
ceilometer cloud base shown as black dots. Rémillard et al., 2012, J. Climate



Wang and Feingold, 2009, JAS
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Wang and Feingold, 2009, JAS

Dark areas= rainfall rate

Open Cell
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Role in Guiding ASR Warm Low Cloud Science

e CAP-MBL Case Studies: stimulate further modeling efforts with the
goals of:

e Comparing structural features of the open and closed cell mesoscale cellular
convection

Refining LES-observation interface

Interpreting idealized LES studies

e Example: Wang and Feingold, 2009
O Aerosol at open-closed cell boundary cause gradients in precipitation
O Circulation promotes precipitation in the polluted closed cells

0 Circulation strength depends on the contrast in precipitation under the clean and polluted
conditions at the boundary

Stimulating specific LES studies on these cases



B ANDREW M. YWOGELMANN, GREG M. McFaARQUHAR, |oHN A OGREN, Davip D) TURMER,
|EMMIFER M. COMSTOCK, (GRAHAM FEINGOLD, CHARLES M. LoNG, HarLiol H. |oNssoN, ANTHONY BUCHOLTZ,
Lo B Colems, GLEMM 5. Diskii, HErRMAaMM GERRER, B Paul Lavwson, Ror K. YWooDs, EUSABETH ANDREYYS,
HEE|UNG TaNG, | CHRISTINE CHIU, DaNiel Hartsook, Jonn M. Hueee, CHACMEN Lo, ALEXANDER MARSHAK,
JusTii ¥, MoNROE, SaLlr A MCFARLANE, BEAT SCHMID, |AS0N M. TOMUNSON, AND TaMI TOTO

A carmnpaign invobing 260 flight hours over more than 5 months provides the first
axciended-term aircraft dataset of a wade range of continental boundary layer douds,
and aeroscl properties for dirmate studies,

Fiz. 2. RACORO flight hourdstributions per
obpective. Total flight hours are plotted per
primary objective: cloud sampling, boundary
layer turbulence ¢ haracterization, asrosol
¢ haracterization, surface albedo mapping,
and radicmeter tit-comrection charac terza-
tion. The ferry time to and from the study site
is prov ided, whic h alko was used to scout the
conditions in preparation forthe on-site pat-
terns (e.g., determine clooud altitudes, bound-
ary layer height, and wind direction). The
primary o bjective dictated the flight pattern
used; howerer, a given flight pattern could
serve the sampling meeds of other objec tives.
At the base of each bar, the tine s expressed
as a pencentage of the total 260 h flown.




Session Goals

 Brief descriptions of CAP-MBL and RACORO studies

 Are warm low cloud observation and modeling efforts sufficiently
coordinated across working groups?

Do we have the necessary tools?

* How do we proceed beyond these case studies? What is the long
term plan?



Agenda

10:30-10:45 Mark Miller: Overview of the cases and objectives for the session
10:45-11:00 Xiquan Dong: Short surveys of the characteristics of the ENA cases
11:00-11:15 Andy Vogelmann: Results from RACORO observations

11:15-11:30 Wuyin Lin: Results from RACORO modeling

11:30-12:00 Discussion



Outtakes
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Figure 2. WRF LES simulation of stratocumulus at

TCAP AMF#1 site (15 November 2012 at10

36 UTC)



e Observed during ASTEX (Atlantic Stratocumulus Transition Experiment; 1992)

Santa Maria, Azores
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What large-scale controls determine why on some days over land
(SGP) there are active cumulus whereas other days do not have

only forced cumulus? i o
JAS 2013, in press

e Answer: ngher BL Forced ShCu Active ShCu
Relative humidity at J«l h B N
the start of the day. = " g | Y i
lower cloud base, 2 |/'\,| || |.f"‘.| |. . i
greater in-cloud RS .
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shear doesn’t matter

Based upon composites of SGP observations for 40 days of
thin shallow cumulus and 70 days of thick shallow
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Mesoscale Organization in the Marine
Boundary Layer: A Key Scientific Issue

» Hailong Wang and Graham Feingold, 2009: Modeling mesoscale cellular structures and drizzle in
marine stratocumulus. part I: impact of drizzle on the formation and evolution of open cells. J.
Atmos. Sci.,66, 3237-3256.

» A new modeling framework is used to investigate aerosol—cloud—precipitation interactions and
dynamical feedbacks at the mesoscale. The focus is on simulation of the formation and evolution
of cellular structures that are commonly seen in satellite images of marine stratocumulus clouds.
Simulations are performed at moderate resolution in a 60 x 60 km?domain for 16 h to adequately
represent the mesoscale organization associated with open cells and precipitation. Results support
the emerging understanding that precipitation plags a critical role in the formation and evolution of
open cells. Evaporation of raindrops generates a dynamic response that manifests itself
In cellular organization of updrafts and downdrafts and promotes and sustains the formation of an
open cellular structure in cloud fields. Vertical motion in open-cell centers with thin clouds is
minimal. It is shown that a mean surface rain rate as low as 0.02 mm day ! is, for the case
considered, sufficient to promote the formation of open cells. The maximum dimension of
individual open cells ranges between 5 and 30 km. Individual cells grow at a mean rate of between
5and 10 km h71. Irre ularl(tjy_ In the shape of open cells is caused by formation of new premf)ltatmg
regions at the cell walls and interference with neighboring cells, which erode, and eventually
eliminate, the old cells. The typical lifetime of large individual open cells is about 2 h, close to that
observed by radar, although a collection of open cells as a whole may last for tens of hours.



Mesoscale Organization in the Marine
Boundary Layer: A Key Scientific Issue

» Hailong Wang and Graham Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine
stratocumulus. part Il: the micro hg/SICS and dynamics of the boundary region between open and closed
cells. J. Atmos. Sci., 66, 3257-3275.

« This is the second of two companion papers on modeling of mesoscale cellular structures and drizzle
in marinestratocumulus. In the first, aerosol-cloud—precipitation interactions and dynamical feedbacks were
Investigated to study the formation and evolution of open and closed cellular structures separately. In this
paper, coexmtmgjopen and closed cells and how they influence one another are examined in a model domain
of 180 x 60 x 1.5 Km3, Simulations show that gradiénts in aerosol at the open—closed-cell boundary cause
gradients in precipitation that generate a mesoscalecirculation. The circulation promotes precipitation in the
polluted closed cells but supi:)resses it in open cells by transporting water vapor to the closed-cell regime and
carrying drier air and aerosol back to the open cells. The strength of this circulation depends on the contrast in
precipitation under clean and polluted conditions at the boundary. Ship plumes emitted into clean, _
E)I'e_CIpltatlnﬁ reﬁ!ons, simulated as a special case of a clean—polluted boundary, develop a similar circulation.
rizzle in the ship track is first suppressed by the increase in aerosol particles but later recovers and becomes
even stronger because the local circulation enhances liquid water ]Qath owing to the convergence of water
vapor from the region adjacent to the track. This circulation modities the transport and mixing of ship plumes
and enhances their dispersal. Finally, results show that whereas ship emissions do increase cloud albedo in
regions of open cells, even the addition of very large aerosol concentrations cannot transform an
open cellular structure to a closed one, for the case considered.



» Suppressed environments favorable for low clouds
« significant (but not overwhelming) subsidence (1 —» 3 pubar s™1)
 adequate BL water vapor
* source of BL TKE
 saturation beneath inversion
« shallow clouds dominate regardless of time of day

 Cloud systems
e eastern ocean stratocumulus
* northern ocean and Arctic stratus
e wintertime continental stratocumulus
« continental forced cumulus
 subtropical ocean trade cumulus



MoveEMBER 2009 WANG AND FEINGOLD 3248

-1.5 -0.5 -0,.2 02 05 35

R

?: "fi'_..-f’ ._ic;

T

¥ (km)

y (km)

-, i -'.if o
0 H:'?"{ ;"15;3-';‘??‘- “f . % L LAY ! , L PV o A A Vi
0 10 20 30 40 50 60 0 10 20 30 40 50 &0 0 10 20 30 40 50 60
¥ (km) w (k) % (km)
F15. £ Snapshets of 300-m-lavel wartical welocty fields cwer a i-h percd for experiment M&5. Time since model start iz indicated above
#ach panel. Thres indivdael updraft cells are labeled 1 2, and 3 to track their svcluben with tme.
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Case Studies

e Tend to galvanize the observation and modeling communities
 Facilitate collaboration between CLWG and CAPI low cloud groups

* High quality warm low cloud data sets from CAP-MBL (marine
boundary layer) and RACORO (continental boundary layer)

 We have new experimental capabilities at SGP and at the new Eastern

North Atlantic Site
e Cases may suggest new ways to configure our measurements
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