Analysis of Vertical Velocity Measured During RACORO

A work in progress

Julia Flaherty, Larry Berg and Jennifer Comstock

RACORO Overview

- January-June 2009
- Routine flights in BL & liquid clouds
- Measurements
 - Optical and microphysical properties of clouds and aerosols
 - Radiative fluxes
 - Dynamic and thermodynamic atmospheric state
- Platform: CIRPAS Twin Otter

RACORO: Routine AVP CLOWD, Optical, Radiative, Observations

RACORO Flight Plans

- Cloud Flights
- Clear sky flights
 - Turbulence: long level legs in BL
 - Surface albedo
 - Radiometer tilt characterization

Turbulence Legs

17 flights with turbulence legs

Flown through clear air (cloud free days)

Data Processing

Velocity data available at 10 Hz

- First steps
 - Remove mean and trend
 - Remove outliers
 - Replace missing values
- Filter to focus on length/time scales of interest
 - Large scale features may not be well represented
 - Instruments might not be collocated—gust probe and cloud microphysics

Filtering: Wavelets

Why not FFT?

- Wavelets to describe events in high-frequency data
 - Localized in both frequency and time
 - Translate a "mother" wavelet in time
 - Dilate at each time
- Mexican-hat mother wavelet used in this study
- Can filter data to desired scale useful for comparison

with remote sensing platforms

Example: 29 June 2009

- Near BL top z/z_i ~ 0.98
- Original w' in red
- Used wavelet transform to filter data
 - 1-50 sec
 (50-250 m)
 - 10-50 sec
 (500-2500 m)

Proudly Operated by Battelle Since 1965

Vertical Velocity: Changes with Height

Reduced turbulence near BL top

Pacific Northwest

Velocity Variance

RACORO results similar to past studies

Range of scales are important

Scales between 1 and 10 seconds (50-500 m) contain a significant amount of energy

Histograms of w'

- Decrease in spread of distribution with height and filtering
- Distributions become less Gaussian with removal of shorter scales

Skewness:

0.16

0.55

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

On Going & Future Work

- Additional analysis of turbulence legs
- Extension to days with clouds
 - Main reason for using wavelet analysis
 - Prepare detailed analysis of vertical velocity for comparison with parameterizations and remote sensors
 - Coupling with cloud microphysical measurements
- Make data set available for community use

Example: 6/29/09

- Near BL top
 - Original w' in red
 - Used wavelet transform to filter data
 - 1-50 sec
 - 10-50 sec

Vertical Velocity, TKE, & Heat Flux: 06/29/09

Original w' in red

- Used wavelet transform to filter data
 - 1-50 sec
 - 10-50 sec

Vertical Velocity, TKE, & Heat Flux: 06/29/09

- Original w' in red
- Used wavelet transform to filter data
 - 1-50 sec
 - 10-50 sec

Vertical Velocity Histograms

Histograms of w' have been constructed

- Leg 1: near BL top
- Leg 4:

