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Real time processing of Radar
parameter computation

Radar Variables

Ground Clutter Filtering

Range-Velocity Ambiguity Mitigation

Overlaid Echo Suppression
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Estimates of Spectral Moment

* The mean received power provides the intensity of precipitation within the resolution volume

time domain : A, :%Niﬂvh [«]° spectral domain : 2, :%g‘]sh [«]°
k=0 k=0

* The mean radial velocity of the precipitation is obtained based on the Doppler phase shift (caused
by the motion of particles) of the received signal
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* The precipitating volume consist of a large number of hydrometeors with widely varying radial

velocities resulting a Doppler velocity spread about the mean velocity. The spectral width gives a

measure of turbulence of the medium V-1 o .
(Vk . V)2|Sk|
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Estimates of Polarimetric Variables

Raindrops < 0.3 mm —» Zgr=0dB

. . .. . . . Zar~1.5dB Zar~2.0dB Zayr~3.6dB
+ Differential reflectivity between polarization channels provides a ‘ ’ ‘
measure of mean particle shape o O
A 2.70 mm 3.45 mm 5.30 mm
A e Zar~ 4.0 dB Za~55dB Za~ 63 dB

Z, =10log | =-
d 10 p

4

8.00 mm

* The differential propagation phase shift is the phase difference
between vertical polarization and horizontal polarization as the wave
propagates through rain

N-1
time domain 1y, = arctan{z v, |kV; [k]}

k=0

\'\

V1 Zar=10log(Zy/ Z +)

* The correlation between the received signal in the horizontal
polarization and vertical polarization is gives an indication of similarity
in the nature of back scattering from the hydrometeors
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AL > 5, |kls; 4]
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Spectral Clutter Filtering Example

+» Obtain spectral coefficients and power spectral
density of received signal

" Pe vE
Siv,8) = —
w0 = Fmer{ )t

v —w)® 2T,
P ﬂp{—'* ) }+ =),

F— Z
V 2mw? 2w

+» Obtain adaptive noise floor by sorting spectral
coefficients by power

¢+ Design notch filter in spectral domain

> Estimate clutter model based on Gaussian
model fit to zero Doppler region

» Estimate notch width based on clutter model
and noise

[; II
n= docT, ' 21n [*.-"Eﬂe (E)]
A ‘\'I Pr.

¢ Notch the clutter signal with a spectral clipper

¢ Interpolate the notch filtered region by iteratively
fitting a Gaussian model to the weather signal

¢ Replace the clutter region with model and subtract
noise power
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Ground Clutter Filtering

KLWE 09-MAY-2007 00:37:42 UTC KLWE 09-MAY-2007 00:37:42 UTC
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Ground clutter

Reflectivity before and after ground clutter filtering. Data collected on May
09, 2007 at Lawton (EL=1 degQ).
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Ground Clutter Filtering

KLWE 09-MAY-2007 00:37:42 UTC KLWE 09-MAY-2007 00:37:42 UTC

Ground clutter Circulation signature

Velocity before and after ground clutter filtering.
Data collected on May 09, 2007 at Lawton (EL=1 deg).
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Range-velocity Ambiguity Mitigation Methods

e The maximum unambiguous range and unambiguous velocity have a limitation based
on wavelength and pulse repetition time

e Maximum unambiguous range and unambiguous velocity are related to each other as

cA

rmxrmx_8
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Range-velocity Ambiguity Mitigation Methods

e Ifv
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IS increased then r,,., decreases correspondingly ( Range-

velocity ambiguity)

e Fundamental limitation of pulsed Doppler radar transmitting
uniformly spaced pulses
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Radial Velocity Folding in Severe Weather

Velocity measurements with uniform PRT and staggered PRT with CSU-CHILL 2006-Dec-20

W (PP CSU-CHILL 200681220 23:69:20 UTC
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Unfolded velocity folding using staggered PRT waveform
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Range-velocity Ambiguity Mitigation Methods

Phase coding to mitigate range ambiguity
— Random phase coding
— Systematic phase coding

Staggered pulsing to mitigate
— Staggered PRT
— Staggered PRF

Polarization diversity to mitigate range ambiguity
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Range-overlay due to shorter PRT

In order to obtain reasonable unambiguous velocities the Doppler radar’s
PRT is significantly shorter

The shorter PRTs results in range-overlaid echoes which gives erroneous
measurements of the Doppler spectral moments
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@ : Resolution volume S,.(0) =¥ (0)
7, : Maximum unambiguous range
"fn: Pulse repetition time (PRT) S =V D+ V2 (1)

j S,(2) = V, () + Vér(Z) + %, (2)
z S,.(N-1) = (N-1) +V HN-1) +..+V pN-1)
/0 S

5,(0) H T S H 7 H s \:ﬂ
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The transmitted pulses are phase coded and the received
signal i1s cohered for the first and second trip

-
o Vi

* The transmitted pulses are phase
coded with switching phase vy,

Vk :VklejV’k +szejWk—1

AY -~
“““““
'Y -

4

Vk :Vkl +sze i(wka—wi) Vs

Where ej(‘”k-l_‘”k) — ej¢k is the modulation code
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Random Phase Coding For Range-
Overlay Suppression

30 25

UNFILTERED " FILTERED km

Before overlaid echo suppression and After overlaid echo suppression and
clutter filtering. Data collected on May clutter filtering. Data collected on May
06, 2007 at Lawton (EL=1 deg). 06, 2007 at Lawton (EL=1 deg).
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Staggered PRT for Mitigating Velocity Ambiguity

A periodic block pulsing scheme can be used for range —velocity ambiguity
mitigation
In general we can have T,,T,,T,,..., T, such that we satisfy

ZTJ =T
j=1
i A A A ?k A y JIL \ A JI; A A
S SRLETR LER Lt
I :' 4 A ¥ y v ‘IV v v
' Block 1 .. Block2 Block N ___

lllustration a periodic block pulsing scheme in hybrid mode of
operation for a dual polarized radar
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Staggered PRT for Mitigating Velocity Ambiguity

Staggered PRT scheme with two PRTs T and 7' will increase the maximum
unambiguous velocity to

, A
* Ax(T, —T.
T, T1 72'(2 1)
H
V
W/
R. R,
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Staggered PRF

In the staggered PRF technique pulses are transmitted with different PRFs

A A P/QE?) A 4 AP/@CZA A A A A A A A A

Dual-PRF waveform are more common in weather radars to increase the unambiguous
velocity

The maximum unambiguous velocity obtained from Dual-PRF waveforms is given by
Valvaz
Var —Va

V_ =

a

The unfolding procedure of velocity V; is similar to the unfolding procedure of
staggered PRT
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Velocity Unfolding

KCYR 09-MAY-2007 03:21:42 UTC KCYR 09-MAY-2007 03:21:42 UTC

PRF=1.6 kHz Unfolded

Velocity measurements on a radial-by-radial basis with dual-PRF Unfolded velocity with dual-PRF

KCYR 09-MAY-2007 03:21:42 UTC

Doppler velocity from Dual-PRF. Data

g "l unfolded velocity .
g e collected on May 09, 2007 at Cyril
3. el (EL=11 deg).

- ,: PRF=2.4 kHz
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Radar Product Generation

Input
igital radar signals

\ 4

Estimate initial moments

\ 4
Doppler spectrum,
Pxx(_ ?(Xk)

Spectral floor,
Pn(_f1 (Pxx)

If only
overlaid echo
or noise?

YES Spectral clutter filtering &

Py < I:)xx -P . .
- overlaid echo separation

A\ 4

Estimate parameters

A 4

@eturn parameter?
And DFT
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|

Adaptive Clutter Model,
Pcc(_fz(Pxx'Wc)
v

Notch width,
nw‘_f3(Pcc’ Pn)

v

Spectral Notch filter,
an — f4(PXX’nW’ Pn)

v

Initial parameters,
Mk‘_fS(an)

v

,| Fit model (linear or Gaussian),
Pmm(_fG(Mk)

v

Update parameters, Interpolate,
Mk‘_Mk+l an(_f7(Pmm1an)

A *

Estimate parameters,
Mk+1(_f5(an)

'

Ne Stopping criteria, M ‘@eturn parameter%
Fa(M,M,.,) ? _\ And DFT
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f,= Dynamic noise floor estimation
f,= Adaptive clutter model

f;= Adaptive notch width

f,= Spectral notch filter

fs= Moments estimation from
spectrum

fs= Spectral model

f,= Interpolation

fg= Iteration stopping criteria

fo= Calibrated Zh calculation

f,o= Calibrated Zdr calculation

f,,= Differential propogation phase
f,,= Co-polar correlation coefficient
f,;= Dual-PRF velocity unfolding
f,,= Speckle filter

|

H & V Channel
Parameters and DFT,

MhliFhl!leiFvl, MhZ'FhZ’MVZ’FVZ

A

Zp—fo(Mp1,M;,,CAL)
Zdr (_flo(zh !Zv’ CAL)

Calibration updates,
CAL

y

\Ifdp‘_fll(Fhr Fui:Fn2 Fu2)
Phv (_flz(FhliFvliFhZ'FVZ)

y

Vinfolded=f13(Mn1,Mp2,M, 1,M, )

y

Speckle filter,
Vunfolded(_f14(vunfolded)

A

_ Return
Zh ,V,O'V ’ Zdr’l//dp1|phv (OX
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Severe
clutter from
Rocky
mountains

-100

\Velocities
biased due
to clutter

Cologél(tlg

Universicy

Data Products with CSU-CHILL

Data collected with PRT =1 ms; N=64 on Dec 20, 2006 at 23:58:19 UTC

100

100
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Attenuation correction

In-line processing for weather radar networks ASR Meeting 2010

26



IP1 Real-time Dual-Pol Based Attenuation

Correction

Raw Data (vectors of radar observables)

RaganConst T~ Data Preprocessing
(Segmentation based on data)
%

-

Self-consistent method with modified cost function

N —

Attenuation correction for Z, and Z, separately
()

I AN

Parameter Estimation
(o, and a)
K= o Kp
kv:adep

Optimized for
real-time computing
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Dual-Pol Based Attenuation Correction

Reflectivity maps at 07:37:31 May 8 2007 and Nexrad reflectivity map at 07:37:24 May 8 2007. (a) IP1
reflectivity before attenuation correction (b) IP1 reflectivity after attenuation correction (c) Nexrad
reflectivity.

IP1 Composite Reflectivity (Measured) IP1 Composite Reflectivity (Corrected)
2007/05/08 07:37:31 2007/05/08 07 :37:31

982 98 978 976

Longitude {deg)

Colorado In-line
ate
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Dual-Pol Based Attenuation Correction

Zy-Z, and Kyp-Z, 2D histogram plots for a squall line case on May 8, 2006 before and after
attenuation correction.
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QPE

g i.‘nh.l:ni.ity
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Rainfall Algorithms

R(Z,Z,) :CZ:‘"%? or CZﬁlOo'ledf(dB)
K. )
R(de) — 129(%)

R(K Zdr):CBKc?ps dtr)g mmh™

dp?

versity
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The use of K, to estimate rainfall has a number of
advantages over power measurements:

e independent of receiver and transmitter calibrations,

unaffected by attenuation,

relatively immune to beam blockage,

unbiased by presence of hail or other 'spherical’ ice particles in
the resolution volume

Cokgg%) In-line processing for weather radar networks ASR Meeting 2010
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The radar network
— Southwestern Oklahoma, ~7000 sq km
— Four X-band, dual-polarization radar

In-line processing for weather radar networks ASR Meeting 2010
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NIED’s X-Net Test Bed

 Led by NIED, National Research Institute for Earth
Science and Disaster Prevention, Japan

— Over one of the most populous and densest metropolitan
regions in the world

T

-
-

_____

e
Kawas
VR 'ﬁ.p“

;—1.3;_._'.
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Ky, and Composition

* Ky, based rainfall conversion is attractive at X-band
— Responds well to low rainfall rate
— Avoids the uncertainty in attenuation correction
— Immune to calibration factors across the network

KCYR %ikm KSAD %/km
1" 1"
10 10
35.2 g 35.2 q
8 8
= 35 7 = 35 7
_§" g E’ g %km
=z = 1
= 34.8 4 = 34.8 i
~ 38 3 ~ 345 3 10
) % ) % 352} 9
34.4 0 344 0 8
| i L
985 a3 975 985 a3 975 2 7
Lon (de Lon {deg E 6
g g
II T 3481 5
I 4
KLWE %ikm %/km
11 1 346 3
10 10 _ 2
35.2 9 g
' 3 3 314 N 1
_ Fi Fi
5 ¥ n ! . °
= i 0 b S
5 4.8 g g 342" 66 904 982 98 978 976 1
~ 346 3 3 Lon (deg)
: yi yi
1 1
34.4 0 0

-

'
-

98.5 93 975 98.5 93 97.5
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Rainfall Conversion

* R-Ky, based rainfall estimation was implemented in
CASA'’s IP1 test bed.

R= 0.6ﬂx10‘3jv(D)D3N(D)dD
Ky, =g7c [ a-rp*N(D)dD
A scaled version of KOUN'’s rainfall

estimation is tested (based on local
measured DSDs). *

R =47.3K """ mm/hr

!

R =18.15K,,""" mm/hr

* Ryzhkov, A.V,, S.E. Giangrande, and T.J. Schuur, 2005: Rainfall Estimation with a Polarimetric Prototype of WSR-88D. J.
Appl. Meteor., 44, 502-515.
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Gauge Comparison

« USDA ARS Micronet — A rain gauge network located
at the center of the IP1 test bed

mii0 =il
35.2 wizs__ A~ A
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| T 124 Wiz Ty W22
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35 I 51 14 | . .L. A e — 135 /135 )13?/
o l{“i Joohag o " w7 ;r o SR FT
— =t /| 148" 145 |
= - E"\‘. - VAR \ 146 g i 1‘&
% B R y 1 S ) { N
2 348 1 N[ sy, 154 NE ‘\ \1 156/ Lo
et L
© — a—é
- w164 p 1(72 /;’: —
b 14 z’
L RT-E S | m- j_ . /
346 n o -,'\ W60y L1sg 3
) T e i
166 miG/ 7
34.4 Courtesy:
34.2

586 984 9882 B8 HTB HT6 974

Lon {deg)
Little Washita

Size: 611 km?
Mean annual precipitation: 760 mm
Gauge network: 20 tip-bucket stations
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http://ars.mesonet.org/�

e Metrics:

QPE Evaluation

: : R, — R,
— Normalized bias: <e>N=%
— Normalized error: \se - ARe = Rel)

(Re)

40
A
sl | © 05072007 <
© UnZuAe S - Performance of hourly rainfall estimates in comparable
& (5/27/2008 . & . .
23|« o0g2008 SR AR weather radar systems using K, based QPE algorithms.
£
s i 1 Radar System or Total Events NSE
E 20 ] Network Analyzed (%)
| ] IP1( total ) 29 22.76
[
T Instantaneous 42
© 10 1 Hourly 15
5 1
ol | MP-X 3 14.8
35 40

Gauge (mm)

Cdcgg(ilé)

Universicy
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QPE Evaluation

* A composite R-K;, based estimation was
Implemented in NIED’s X-Net test bed.

o X-Net Ground Validation
— Three events: 2 straitform, 1 typhoon

+ 2D-Video disdrometer (CSU)

© 1min rain gauge (Pukyong Univ.)

* JW disdrometer (NIED, Nagoya Univ)

R=19.63K,, ™ mm/hr

R=7.07x10"°Z,%*" mm/hr

measured DSDs

K,, >0.3°/km and Z, > 35dBZ

Also based on locally

15 min NE (%)
NB (%)

I h NE (%)

NB (%)

3h NE (%)

b NB (%)

21.1
-2.9
14.8
—1.1
11.4
-1.0

- Network 1

g i.‘nh.l:ni.ity
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Dual Doppler

g i.‘nh.l:ni.ity
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Dual-Doppler Scan and Retrieval

* Real-time Dual-Doppler wind velocity retrieval system
has been developed and installed in IP1, based on
proven algorithms and computation tools.

— 3-D observations from the IP1 radars are gridded and merged,
fused into a common analysis grid

— Both horizontal wind field and vertical wind component are

computed
R

Automate =
Sca

{u}__sind)lcosel CoSdq COSO; | _v} . low level
sing,cos0, cosdy cosOy | | v approximation

[sin¢;cos0; cosdqcosO; |
|sin¢, cosO, cosdpCcosOy | [Sin6;
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Dual-Doppler Scan and Retrieval

 The upgrades over the last two storm seasons improved
the capability of the IP1 radar network for dual-Doppler
wind observations

H=5km; R, ,,,~40km; ®MAX=30deg deg

I90
80

—170

Error assessment at lower altitudes

oLtoy 1 cos’ §, +cos® 6,
20,  sin®*(4 —¢,) 2cos’ 6, cos® b, 35}

1 160

—150

Lat (deg)
w
N
[os]

Unique Capabilities
< Real-time processing and control

-98.8 -98.6 -984 -982 -98 -978 -97.6 -974
Lon (deg)

Best Dual-Doppler Angles in the IP1
Coverage at 5 km AGL
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Dual-Doppler Scan and Retrieval

 Dual-Doppler scan strategy
— Best beam crossing angle for Dual-Doppler retrieval,
— Lowest elevation angle to reduce scan interval (tilts);
— Closest range to efficiently use the power budget.

2 2
2 2
o, +o, [ max(,o max(r,, -
F=———+ (0,6,) + M Load Scan Table
Geo Referenced Map 20, Ouax Max I
New Storm
=5km; R,,,,=40km; ®  =30d :
‘ //W o e ‘ Cell (polygon)
—{lwe-rsp
L leyrrsp Find Best Radar Pairs
[[cyr-iwe (Pre) Compute the
Assess Retrieval Errors Azimuth Angle
—sao-rsp ¢
Combine Azimuth Angle
Geo-location Table sao-hwe into Scan Task

sao-cyr

-98.8 -98.6 -984 -982 -98 -97.8 -976 -974
Lon (deg)
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N
= Wind
LDM
' Synchronization Multi-Doppler
Ingest and Gridding Synthesis
I
v
R Cell Detection
TR S"”"T Closed-loop Optimization
. ontrol /
Scan Steering Dual-Doppler |
and Scheduling Rules

g i.‘nh.l:ni.ity
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Anadarko Tornado and Damaging Winds
Event — May 13, 2009

= Mﬂgm;hmm ot & |
F b

EF2 Tornado
< | ~9:22 - 9:40PM

S Prolonged
! Damaging Winds
*N, 100mph+

~ 3 injuries
e $43 million+ in
property damage

- CASA Tornado
+ Warning 9:21

‘m‘ ~ NWS Tornado
Warnlng 9: 24

n’:—:‘b——hiﬁ L’;":‘ _—3 ——————— T - i ik
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|P1 Radar Network Dual-Doppler Tornado Observation: 2009-May-14

02:28:07 UTC 02:29:07 UTC 02:30:08 UTC 02:31:08 UTC

20090514-023008 Z=1.5km 20090514-023108 Z=1.5km dBZ

20090514-022807 Z=1.5km 20090514-022807 Z=1.5km

111

Altitude (AGL, km)

1+ 0.35

Time
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|P1 Radar Network Dual-Doppler Tornado Observation: 2009-May-14

02:28:07 UTC 02:29:07 UTC 02:30:08 UTC 02:31:08 UTC

20090514-022807 Z=1.5km 20090514-022907 Z=1.5km 20090514-023008 Z=1.5km 20090514-023108 Z=1.5km mph

Y (km)

111

28 28 28 28
18 <16 14 -12  -10 -8 18 <16 14 -12  -10 -8 18 <16 14 -12 -10 -8 18 <16 14 -12  -10 -8
X (km) X (km) X (km) X (km)

20090514-022807 Z=0.75 km 20090514-022907 Z=0.75 km 20090514-023008 Z=0.75 km 20090514-023108 Z=0.75 km mph

Altitude (AGL, km)

Y (km)

14 0.35

28 28 28
18 <16 14 12 10 -8 18 16 14 12 10 -8 18 <16 14 -12  -10 -8 18 16 14 12 10 -8
X (km)

X (km) X (km) X (km)

Time
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IP1 Radar Network Dual-Doppler Tornado Observation: 2009-May-14
Drop in co-polar correlation due to debris

20090514-023205 Z=0.75 km dB
42 %\ KSAG 20080514-023204 p, 01
(%, ] ||

80 38

£
36 ,.n

70 "&r/fﬁ‘ r.""'f
34 ‘f"fl e
| 2 Kir
38 60 e *.27*”.; gt
& an ff fﬂl ;
50 '
= 36 25 [ Hﬁ_‘
é 40 26
> 34 50 o
22
32 20 X 'II' 0 5 10
10 -
30
0
28 10
-18
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Retrievals Products that are fairly stable and
can be considered operationally viable

O Quantitative Precipitation Estimation ( 2D )
O Drop Size Distribution ( Quasi 3D )

1 Water content (2D )

O Hydrometeor Classification (3 D)

O Dual —-Doppler based products such as Vorticity (2 D)

Quality of all these products depends on the quality
of In-line processing
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