Evaluation of Aerosol Properties with GFDL Atmospheric Model, Satellite and Ground-based Data

by Paul Ginoux NOAA GFDL, Princeton, NJ

DOE ASR meeting March 2010 Bethesda, MD

Outline

- GFDL AM3: description of aerosol model
- Global evaluation of aerosol properties
- Analysis of aerosol properties in Midwest
- Conclusions

GFDL Coupled Climate Models

AM3 configurations

- 1. Fully coupled with ocean model (CM3)
- 2. Fixed BC: "observed SST"
- Nudging of u, v, T, p_s: relaxation technique using observed meteorology to force the evolution of transport in the course of time.
 - Advantages:
 - Separate errors associated with dynamics (u, v, p_s), hydrology (q) or thermodynamics variables (T) from chemistry (production/loss) and optical properties
 - Allow direct comparison with observation on daily time scale

GFDL Atmospheric Model AM3

- **Dynamical core:** Finite volume on cubed-sphere grid (~ 2^o grid, 48 vertical levels) by Putman and Lin (2007)
- **Convective Clouds:** Deep convection scheme of Donner (1993), Shallow convection scheme of University of Washington (Bretherton and Park, 2008).
- **Cloud Droplet Number:** Prognostic equation for cloud droplet number using parameterization of activation (Ming et al. ,2006).
- Full tropospheric and stratospheric chemistry online (Horowitz et al., 2003)
- **Aerosol types:** prognostic equation for mass of sulfate (SU), organic carbon (OC), black carbon (BC), dust (DU), and sea-salt (SS). Secondary organic aerosol (SOA) production based on Tie et al. (2005). Sulfate production using full tropospheric chemistry.

Aerosols in AM3

	Sources	Transport	Sinks
	Depends on w _{10m}	Advection	Depends on rain 3D, u _*
Dust	Size = 5 classes $0.1 - 10 \text{ mm}$ $\Phi = \alpha \text{ S } \text{w}_{10m}^3$ $\alpha = 10\% \text{ clay, 90\% silt}$ S= topographic lows (Ginoux et al., 2001)	Convection Diffusion	Gravitational settling of dry particle Turbulent deposition Wet removal
Sea salt	Size = 5 classes $0.1 - 10 \mu m$ Φ = S f (r, w _{10m} ^{3.4}) of dry particle S=open ocean (Monahan et al., 1986)		Gravitational settling of wet particle Turbulent deposition Wet removal
DMS	Dimethylsulfide (CH3SCH3) $\Phi=S f(w_{10m}, S_c)$ (Chin et al., 1998) S=phytoplankton (Kettle, 1999)		Turbulent deposition and Wet removal Oxidation by OH and NO ₃
SO2	Anthropogenic + Biomass burning (Lamarque et al., 2010) Continuous volcanic degassing(Andres&Kasgnoc98) Oxidation of DMS by OH and NO ₃		Turbulent deposition and Wet removal Oxidation by OH, and H_2O_2 and O_3 in aqueous phase
SO4	Oxidation of SO_2 by OH and Aqueous reaction with H_2O_2 and O_3		Turbulent deposition and Wet removal
H2O2	$HO_2 + HO_2 -> H_2O_2 + O_2$		Turbulent deposition and Wet removal Aqueous reaction with SO2, Oxidation by
BC/OC	Anthropogenic + Biomass burning (Lamarque et al., 2010) Biogenic OC emission: plants (Gunther et al., 1995)+ ocean (O'Dowd et al., 2008) Secondary organics: C_4H_{10} oxidation		Aging (τ_{OC} = 2.88, τ_{BC} =1.44 days) Turbulent deposition Wet removal of hydrophilic OC/BC

Aerosol Properties

	SU	OC	BC	DU	SS
Size	n=logn(r), r _{geom} =0.05 μm, σ=2	n=Logn(r), r _{geom} =0.085 μm σ=1.5	n=Logn(r), r _{geom} =0.018 μm σ=2	dN/dInr=a/r ³ , 5 bins: 0.1-10 μm	dN/dInr=a/r ³ 5 bins: 0.1-10 μm
Shape	Sphere	Sphere	Sphere	Sphere	Sphere
Growth	Yes, as $(NH_4)_2SO_4$ Tang and Munkelwitz (1994)	Yes for phylic (Ming, 2004) No for phobic	No	No	Yes as mixture of salts
Composition	Mixture with NH ₃	Mixture of acids (Ming et al., 2005); Aging	Elemental carbon Aging	Alumino- silicate, mostly illte+2.7% hematite	Mixture of salts Tang et al., 1997
Refractive index	Tang and Munkelwitz (1994)	Hess et al. (1999)	WCP (1986)	SW: Balkanski et al., 2007 LW: Volz,1973	Tang et al., 1997
Mixing	Internal with BC (volume weighted)	external	Internal with sulfate	external	external
Density (dry) kg/m ³	1769	1800	1000	Clay: 2500 Silt: 2650	2160

SO₂ annual mean emission (2000)

Lamarque et al., 2010

OM annual mean emission (1990-2000)

Anthro: Lamarque et al., 2010

BC annual mean emission (1990-2000)

Lamarque et al., 2010

Dust annual mean emission (1990-2000)

Ginoux et al., 2001

Sea-salt annual mean emission (1990-2000)

Monahan et al., 1986

Global annual mean emission (1990-2000) [Tg/year]

Species	anthro	biobur	biog	ocean	soil	volc	ships	aircraft	total
SO2	113	1.7	0	0	0	7.3	11.1	0.1	133.2
OM	20+11 [*]	35.9	31.5	22	0	0	0.18	0	98.6
BC	4.9	2.6	0	0	0	0	0.1	0.005	7.6
Sea-salt	0	0	0	6445	0	0	0	0	6445
Dust	0	0	0	0	1324	0	0	0	1324

* Production of secondary organics

II. Global scale evaluation

- Surface concentration: U. of Miami data (Savoie and Prospero, 2001)
- Aerosol optical depth:
 - MODIS (Levy et al., 2005) and MISR (Khan et al., 2005)
 - AERONET sunphotometers (Holben et al., 1999)
- Aerosol co-albedo: AERONET retrieval (Dubovik et al., 2002)
- Aerosol extinction profile: MPLNet (Welton et al., 2001)

AERONET AOD (550nm)

AERONET co-albedo (440nm)

MPLNET $\varepsilon_{ext}(z)$ ARM site

III. Aerosol properties over Midwest

- Surface concentration:
 - IMPROVE (Malm et al., 1994),
 - NOAA PMEL (Patricia Quinn)
- Scattering and Absorption: NOAA ESRL (Sheridan et al., 2001)
- Aerosol optical depth: MODIS (Levy et al., 2005)

Sulfate, Sodium, Calcium surface concentration SGP (OK) and BND (IL)

Monthly ε_{scat} + ε_{abs} SGP (OK) & BND (IL)

Daily (2002) ε_{scat} + ε_{abs} SGP (OK) & BND (IL)

Daily (Aug 2002) ϵ_{scat} and ϵ_{abs} SGP & BND

August 9, 2002

GFDL Model: 950mb dry Scattering (orange shading) and Absorption (blue lines) coef 550nm [Mm-1] 8/9/2002

GFDL Model: 670mb dry Scattering (orange shading) and Absorption (blue lines) coef 550nm [Mm-1]

August 12, 2002

MODIS AQUA AOD MODIS Aqua AOD 550nm 8/12/2002

GFDL Model: 950mb dry Scattering (orange shading) and Absorption (blue lines) coef 550nm $[\rm Mm-1]$ 8/12/2002

GFDL Model: 670mb dry Scattering (orange shading) and Absorption (blue lines) coef 550nm [Mm-1] 8/12/2002

August 14, 2002

MODIS AQUA AOD MODIS Aqua AOD 550nm 8/14/2002

GFDL Model: 950mb dry Scattering (orange shading) and Absorption (blue lines) coef 550nm [Mm-1] 8/15/2002

GFDL Model: 670mb dry Scattering (orange shading) and Absorption (blue lines) coef 550nm [Mm-1] 8/14/2002

IV. Conclusions

- New developments in GFDL atmospheric model includes aerosol with full chemistry
- Evaluation with data shows satisfactory results globally but with regional discrepancies:
 - AOD underestimate in polar region (BC/OC aging, drizzle?)
 - AOD overestimate in polluted regions (f(RH)?)
- Nudging of u, v, T, ps is used to analyze synoptic variability over Midwest in conjunction with data at SGP and BND.
 - Model shows much larger discrepancy in scattering and absorption in BND than SGP.
 - Layering with different aerosol composition: difficulty to assess results without lidar data
 - Internal mixing of BC/SO₄⁼ : sensitivity analysis

Acknowledgments

- GFDL GMDT: John Austin, Leo Donner, Stuart Feidenreich, Chris Golaz, Larry Horowitz, S-J Lin, Chris Milly, Yi Ming, Dan Schwarzkopf, Elena Schevliakova, John Wilson, Ming Zhao
- ESRL data: John Ogren and Betsy Andrews
- PMEL data: Patricia Quinn
- AERONET: PIs of each sunphotometer, Oleg Dubovik
- MODIS and MISR: science teams