Microphysics and Boundary Layer Research from Long-term Doppler Lidar Observations

Robin Hogan Chris Westbrook, Tyrone Dunbar, Alan Grant, Ewan O'Connor, Anthony Illingworth, Stephen Belcher, Janet Barlow Dept of Meteorology, University of Reading

Resolving small-crystal controversy

- Aircraft probe measurements: enormous numbers (1 cm⁻³) of tiny crystals < 50µm in cirrus
- Cloud physics community is divided: are these real or an artefact due to break-up of larger particles on inlet?
- Mitchell (2008) showed that if included in climate model, cloud albedo doubled

1.5-years of Doppler lidar data

- Much better agreement when small crystals are not included
- Suggests that they are not ubiquitous and are at least partially explained by shattering on aircraft probles
- Westbrook & Illingworth (Geophys. Res. Lett., 2009)

Sometimes small-crystals do exist

8:40 AM 14/2/7

- Deep ice cloud
- Single mode at cloud top
- Nucleation at mid-levels
- Bimodal when warmer than -15°C
 - Large aggregates ~1 m/s
 - Small pristine plates ~0.3 m/s
 - Black crosses show Doppler lidar
- Sometimes small ice can be seen to be falling from supercooled liquid layers
- Westbrook et al. (2010, QJRMS)

Two-color rain/drizzle sizing

- Refractive index of water at 1.5 μ m: 1.32 0.000135i
 - Half of energy absorbed over path of 600 μm
- Refractive index of water at 905 nm: 1.33 0.000000561i
 - 1% of energy absorbed over path of 600 μm
- Color ratio in rain and drizzle is monotonically related to size
 - Can derive rain rate and any other moment of the distribution
 - In particular, can predict the radar reflectivity for verification
- In principle, could use the Doppler capability to also infer vertical wind
 - Similar to O'Connor et al. (JTECH 2005) for radar/lidar drizzle sizing
- Sizing also possible in ice, although interpretation of the size measurement depends on particle habit
- Westbrook et al. (2010, Atmos. Meas. Technol.)

Input of sensible heat "grows" a new cumulus-capped boundary layer during the day (small amount of stratocumulus in early morning)

convectively generated turbulence

• Hogan et al. (QJRMS 2009)

Comparing variance to previous studies

- Lidar temporal resolution of ~30 s
 - Smallest eddies not detected, so add them using -5/3 law
 - Only valid in convective boundary layers where part of the inertial subrange is detected
- Normalize variance by convective velocity scale $w_* = \left(\frac{g}{\overline{T}_v}\overline{w'T'_v}h\right)$
 - Reasonable agreement with Sorbjan (1980) and Lenschow et al. (1989)

Skewness

Skewness

Positively buoyant plumes generated at surface: normal convection and positive skewness

Shortwave heating

Potential temperature

Potential temperature

Inferring sensible heat flux

- Vertical wind variance matches what would be predicted from measured surface sensible heat flux H (via w*)
- Over urban areas it is impossible to measure a representative *H* using eddy correlation
- Tyrone Dunbar, Stephen Belcher and Janet Barlow are developing a technique to infer *H* from variance of vertical wind

Estimating TKE dissipation rate

- Can estimate ε from variance in vertical velocity over ~1 min, and horizontal wind-speed
- O'Connor et al. (2010, submitted to JTECH)

Lots of uses for 1.5-µm Doppler lidar

- Properties of small crystals
- Microphysics of mixed-phase clouds
- Size of raindrops and large ice particles (with two lidars)
- Vertical wind at liquid cloud base for activation of CCN
- TKE dissipation rate evaluation of large-eddy models
- Inferring sensible heat flux over urban areas
- Determining source of turbulence (top-down or bottom-up)
- Evaluating boundary layer parameterizations in GCMs/NWP
- Evaluating vertical velocity representation in dispersion models

Skewness in convective BLs

 Both model simulations and laboratory visualisation show convective boundary layers heated from below to have *narrow*, *intense updrafts* and *weak*, *broad downdrafts*, i.e. positive skewness

Courtesy Peter Sullivan NCAR

Why is skewness positive?

...a alternative related explanation

- Updraft regions of large eddies have more intense smallscale turbulence than the downdraft regions
- This leads to an asymmetric velocity distribution
- Will test this later...

Cospectrum

- Time (UTC)
- The cospectrum, C_{WW2} :
 - Defined as the complex conjugate of FFT of w' multiplied by FFT of w'²
- Can be thought of as a spectral decomposition of the third moment:

$$\overline{w'^3} = \int_0^\infty C_{ww^2}(f) \,\mathrm{d}f$$

 Hunt et al. (1988) showed that it goes as freq⁻² in intertial subrange

Skewness dominated by larger (20 minute timescale) eddies

Reflectance (0.83µm)

Closed-cell stratocu.

- Previous studies have shown updraft/downdraft asymmetry in stratocumulus at the largest scales
- Puzzle as to why aspect ratio of cells is as much as 30:1

Shao & Randall (JAS 1996)

Aircraft vs LES

Upside-down Carson's model

 If all the physics is the same but inverted, we can apply Carson's model to predict the growth of the cloud-topcooling driven mixed layer

$$h(t) = 1.4 \left(\frac{2\overline{w'\theta'_{v0}}}{\gamma}t\right)^{1/2}$$

 With longwave cooling rate of *H* = 30 W m⁻² and lapse rate of γ = 1 K km⁻¹, we estimate growth of 1.1 km in 3 hours, approximately the same as observed

Comparison of top-down and bottom-up

- Variance of vertical wind
 - Good agreement with previous studies if H = 30 W m⁻²
 - Variance peaks in upper third of BL: agrees with Lenschow et al.'s fit provided theirs is inverted in height
- Skewness
 - Very good agreement with the fit of LeMone (1990) to aircraft data provided hers is inverted in sign and height
 - Hogan et al. (QJRMS 2009)

I. Stable boundary layer, possibly with non-turbulent cloud (no cumulus, no decoupled Sc, stable surface layer)

II. Stratocumulus over a stable surface layer (no cumulus, decoupled Sc, stable surface layer)

(C)

III. Single mixed layer, possibly cloud-topped (no cumulus, no decoupled Sc, unstable surface layer)

(d)

IV. Decoupled stratocumulus not over cumulus (no cumulus, decoupled Sc, unstable surface layer)

(e)

V. Decoupled stratocumulus over cumulus (cumulus, decoupled Sc, unstable surface layer)

(f)

VI. Cumulus-capped layer (cumulus, no decoupied Sc, unstable surface layer)

