Aerosol Effects on Dynamics, Microphysics and Precipitation of Clouds and Cloud Systems: Physical Mechanisms and Classification

Alexander Khain

The Hebrew University of Jerusalem, Israel

Atmospheric System Research March, 2010

Droplet size distributions in growing cumulus clouds (LBA-SMOCC campaign 2002)

(Andreae et al 2004-Science)

DSD with height in Pyro comulus 190958Z 2300m Ash 190840Z 2167m Pyro 191405Z 2341m Pyro 91950Z 2648m Pyro 93318Z 2842m Pyro 193724Z 3162m Pyro 940187 3419m Pvrc 0.1 91049Z 4165m Pyro 191818Z 4341m Pyro 191926Z 4354m Pyro Dark 0.01 0.001 0.0001 10-5 20 0 10 30 40 50

Drop diameter, µm

Smoky conditions North of JPR, Noon

Reff (z) Amazon region, LBA-SMOCC 2002

SIZE DISTRIBUTIONS IN DEEP CONVECTIVE CLOUD OVER INDIA DURING MONSOON PERIOD (24 Aug 2009) CCN CONCENTRATION (at 1% S) =10000 cm-3 (!!!)

Aerosol effects on precipitation

Aerosols inhibit precipitation:

Kaufman and Nakajima 1993; Borys et al, 1998; 2000; Rosenfeld and Lensky 1998; Rosenfeld 1999, 2000; Givati and Rosenfeld 2004 Tao et al (1995), Ferrier et al (1996 Khain et al, 2001; Khain and Pokrovsky (2004); Khain et al (2004a,b) Axel et al (2004); Tao et al (2004) Teller and Levin(2006) Margaritz et al (2007) Lynn et al (2006) Lin et al (2006) Jirak and Cotton (2006) Tao et al (2007) Khain and Lynn (2007) Fan et al (2010) Storer wt al (2010)

Aerosols can increase precipitation: Ohashi and Kida 2002 Shepherd and Burian 2003 Amiranashvili et al 2004 Filho et al (2004) Khain et al (2004a,b) Khain et al (2005-QJRMS) Axel et al (2004); Axel and Beheng (2004) Tao et al (2004, 2007) Van den Heever et al (2004) Lynn et al (2005a,b) Wang (2005) Lynn et al (2006) Khain et al (2005, 2006, 2007) Khain and Pokrovsky (2006) Tao et al (2007) Khain and Lynn (2007) Li et al 2006 Lee et al 2005, 2008

Precipitation

Precip=GAIN -LOSS(condensation+(evaporation+ice deposition)ice sublimation)

Precipitation is often a small difference of large values

Aerosols affect both generation and loss of hydrometeor mass

Heat budget in green-ocean (clean) clouds over Amazon as simulated using

the Hebrew University cloud model (HUCM), Khain et al, JAS 2008)

Effect of clouds on atmospheric heating/cooling

CONVECTIVE INVOGORATION

LOW CCN concentration

HIGH CCN concentration

Khain et al 2008, JAS

CONVECTION INVIGORATION

TURBULENT STRUCTURE OF POLLUTED AND CLEAN CONVECTIVE CLOUDS

Possible scenarios of aerosol effects on precipitation

A LOSS

Aerosols affect microphysics and dynamics of clouds and cloud systems but possibly via different physical mechanisms

Increase in the condensate generation, ΔG

Increased (x3) concentration of aerosols

~200 CCN cm⁻³

Pinsky, Khain and Magaritz (2007)

Increase in the condensate generation, ΔG

Orographic clouds

Δ Loss> Δ Gain

Khain et al 2007

MM5 model with spectral (bin) microphysics

Accumulated rain calculated using 2D WRF model with SBM

OBSERVATIONS

Rainfall trends in California (Left) and Israel (Right) down wind of urban pollution (*Givati and Rosenfeld, 2004*):

Increase in the condensate generation, ΔG

Increase in the condensate generation, ΔG

AEROSOL EFFECTS IN SINGLE CLOUDS UNDER DIFFERENT WIND SHEARS

Increase in AP concentration in clouds with strong wind shear increases precipitation loss- \rightarrow decrease in precipitation

Increase in the condensate generation, ΔG

CLOUD SYSTEMS

SUPER CELL STORMS (Effects aerosols and humidity)

ROLE OF WIND SHEAR IN SQUALL LINES AND CLOUD SYSTEMS (Khain et al 2005; Tao et al 2007; Lee et al 2008)

Aerosol induced stronger evaporation \rightarrow stronger downdrafts \rightarrow formation of secondary clouds \rightarrow dynamically increased precipitation, spatial organization of convection (Khain et al, Tao et al, Lee et al).

A SQUALL LINE: Time evolution of radar reflectivity (*Khain et al, 2003*,

Clean air (Maritime)

Smoky air (Continental)

EFFECTS OH HUMIDITY AND WIND SHEAR allows classification of precipitation response to aerosols in single clouds and cloud ensembles

EFECT OF AEROSOLS ON MESOSCALE SYSTEMS (TROPICAL CYCLONES)

FACTORS: All previous +SPATIAL REDISTRIBUTION OF LATENT HEAT RELEASE

GRID STRUCTURE OF WRF_SBM USED FOR SIMULATION OF HURRICANE KATRINA

31 levels, terrain-following vertical coordinates

Aerosol Concentration in % of the maximum value

Khain et al 2008, 2010

The vertical cross-section of azimuthally averaged CWC

MAR_CON

Maximum wind speed

Low CCN concentration

Effects of continental aerosols are taken into account

TC GENESIS TD Debby 2006

Trajectory of TS Debby and the grid configuration used in the WRF-SBM model

Khain et al 2010

LOW AEROSOL CONCENTRATIONS

INTRUSION OF SAHARAN DUST INTO TD

Aerosols hinder TD development via increase in convection (and precipitation) at TC periphery.

CONCLUSIONS

1. THE EXISTENCE OF THE AEROSOL EFFECTS ON MICROPHYSICS , DYNAMICS AND PRECIPITATION IS OBVIOUS FROM BOTH OBSERVATIONS AND NUMERICAL SIMULATIONS

2. EFFECTS OF AEROSOLS DEPEND ON ENVIRONMENT CONDITIONS: humidity, wind shear, stability of the atmosphere, etc.

- 3. IN GENERAL AEROSOLS TEND INTENSIFY DEEP CONVECTION AND TO SUPPESS PRECIPITATION FROM SMALL CLOUDS
- 4. IT IS POSSIBLE TO PROPOSE QUALITITATIVE CLASSIFICATION OF AEROSOL EFFECTS ON PRECIPITATION OF SINGLE CLOUDS AND CLOUD ENSEMBLES (LIKE STORMS AND SQUALL LINES).

QUANTITATIVELY EFFECTS OF AEROSOLS CAN BE DERIVED BY USING STATISTICS OF DIFFERENT METEOROLOGICAL SITUATIONS 5. AEROSOLS AFFECT SPATIAL DISTRIBUTION OF CONVECTION IN MESOSCAL SYSTEMS affecting their intensity and precipitation It is the most difficult to evaluate the potential effect of aerosols on precipitation, when increase in precipitation at TC periphery weakens TC or TD

The problems which were not discussed

6. Effects of aerosols on clouds and cloud systems developing in case of low freezing area takes special consideration

7..... 8.....

THANK YOU!

Possible scenarios of aerosol effects on precipitation

A LOSS

△ Gain, CONDENSATE

4. AEROSOLS AFFECT SPATIAL DISTRIBUTION OF CONVECTION IN MESOSCAL SYSTEMS affecting their intensity and precipitation This is the most difficult to evaluate the potential effect of aerosols on precipitation, when increase in precipitation at TC periphery weakens TC or TD

Mass distribution functions at different heights calculated in the GO_ (left) and Smoky_tur (right) simulations (solid lines). The distributions measured in situ at 5 Oct 2002 in the green –ocean clouds at nearly the same height levels are plotted by dashed lines (after Andreae et al 2004 and Freud et al 2004).

Example 3: Continental clouds in very dry air ∆Loss>∆Gain

2D HUCM: Concentration of ice crystals in Texas summertime clouds (very dry air, isolated clouds) (*Khain et al 2001; Khain and Pokrovsky, 2004*)

Results:

1) Aerosols increase ice contents at the upper levels and increases the area of cloud anvils (ice anvils)

2) Formation of a large amount of crystals at high levels represents loss in precipitating mass

TEXAS: CONTINENTAL (UNSTABLE) CONDITIONS

Khain and Pokrovsky (2004-JAS)

maritime aerosol

continental aerosol

Result:

Aerosol decrease (even deplete) precipitation because of larger loss of precipitation by sublimation and evaporation within a dry air environment

The role of atmospheric humidity and wind shear

Aerosols (not including GCCN) inhibit precipitation: Rosenfeld 1999, 2000 (small clouds+droplets are small): Givati and Rosenfeld 2004 (Dry atmosphere, orographis clouds) Tao et al (1995), Ferrier et al (1996 Khain et al, 2001 (very dry atmosphere, high instability); Khain and Pokrovsky (2004) (very dry atmosphere, high instability); Khain et al (2004a,b)(dry atmosphere) Axel et al (2004) (dry atmosphere, single clouds); Tao et al (2004)(dry atmosphere) Teller and Levin(2005) (cold cloud base, single cloud) Lynn et al (2006)(orographic clouds, dry atmosphere) Borys et al (2000)(orographic clouds, dry atmosphere) Jirak and Cotton (2006) (orographic clouds, dry atmosphere)

Khain et al (2007) dry atmosphere (Brazil) Tao et al (2007) continental squall line Khain and Lynn (2007) dry air, supercell storm

Aerosols can increase precipitation: Ohashi and Kida 2002 (breeze, wet conditions) Shepherd and Burian 2003 (wet conditions) Amiranashvili et al 2004 (wet conditions, deep thunderstorms) Filho et al (2004) (wet conditions, breeze circulation) Khain et al (2005-QJRMS) (Wet air, tropical clouds) Axel et al (2004) (wet air); Axel and Beheng (2004) Tao et al (2004) (wet air, squall line) Van den Heever et al (2004) (cloud system, wet) Lynn et al (2005a,b- Florida wet air, squall line) Khain et al (2007-wet, tropical convection) Tao et al (2007) – TOGA CORE (wet, squall line) Khain and Lynn (2007) supercell storm, wet air) Wang (2005) (tropical convection)

LOW CCN concentration

HIGH CCN concentration

LOW CCN concentration

HIGH CCN concentration

LANDFALL: Maximum wind speed

