Nucleation and Growth of Atmospheric Aerosols: Novel Approaches to the Measurement of Nanoparticle Composition and Size

> Peter H. McMurry Particle Technology Laboratory Department of Mechanical Engineering University of Minnesota

Acknowledgments: DOE ASP, NSF NIRT, The Guggenheim Foundation

DOE ASR Annual Meeting: Bethesda, March 16, 2010

New Particle Formation (NPF) Event, Boulder. Distinguishing Nucleation from Growth

Iida et al., JGR., 111: 2006

Regarding Atmospheric Nucleation, John Aitken Wrote a Century Ago:

"The great difficulty in investigations of this kind is the extremely minute quantities of matter which produce surprising results and make the work full of pitfalls for the hasty."

Coworker Acknowledgments

<u>Jim Smith</u>	NCAR & U.E. Finland	TDCIMS, H NanoTDMA, etc.
<u>Fred Eisele</u>	NCAR	Cluster CIMS, etc.
Jun Zhao	NCAR	Cluster CIMS
Jingkun Jiang	UMN	NPG, DEG
Chongai Kuang	UMN, BNL	DEG SMPS, Cluster Dynamics
Modi Chen	UMN	DEG SMPS
Jacob Scheckman	UMN	Nano TDMA
Mari Titcombe	UMN	Cluster CIMS
Brent Williams	UMN	Nano TDMA
Kelley Barsanti	NCAR, Port. State	Aerosol Thermodynamics
Thanos Nenes	Georgia Tech.	CCN Measurements
Sara Lance	Georgia Tech., NOAA	CCN Measurements
David Hanson	Augsburg College	AmpMS

Freshly Nucleated Particles are Hygroscopic and can Serve as CCN: Tecamac, Mexico (16 March, 2006)

Lance, Smith, Nenes, McMurry et al, unpublished 2009

CCN Production Model

 Aerosol general dynamic equation (GDE) solved along diameter trajectory, constrained by *measured* growth rates and size distributions, to evaluate probability that freshly nucleated 3 nm particle will grow to 100 nm:

$$n_{100}(t_{100}) = \exp\left[-\tau_{loss}(t_{100})\right] \cdot \left[n_{3} + \int_{0}^{t_{100}} F_{coag}(t) \cdot \exp\left[\tau_{loss}(t)\right] \cdot dt\right]$$

Scavenging loss Coagulation production

Kuang et al., GRL36:L09822, 2009

CCN Formation Probability & Effect of NPF on CCN Concentrations

• 1 - 10% of 3 nm particles grow to 100 nm

- Pre-existing CCN conc. enhanced by 2 9x
- Measured GR: 5 22 nm/h (~10x than GR_{H2SO4})

Enhancement in CCN Number Concentrations due to NPF

Kuang et al., GRL36:L09822, 2009

Why is Nucleation an Important Atmospheric Process?

$$J(D_{p}) = J \exp \left\{ -\frac{A_{Fuchs}k}{dD_{p}/dt} \Psi \right\}$$

$$\bigvee_{NPF} N_{ucleation} S_{urvival} P_{robability}$$

<u>Answer:</u> Both J and dD_p/dt are much higher than we originally thought possible. Our research aims at understanding why. (NPF=New Particle Formation}

Evidence that J is Higher than Expected

- Boundary Layer Nucleation Rates, J, are very High
- $\sim 10^{6}$ -10⁸ X higher than predicted for binary H₂SO₄-H₂O nucleation
- $J \sim [H_2SO_4]^p$, 1 <p< 2 rather than $J \sim [H_2SO_4]^p$, p> 6-8

Empirical Observation: $J_{1 nm} = K[H_2SO_4]^2$ (Applies to measurements in diverse environments)

Evidence that $GR = dD_p/dt$ are higher than expected

- 1. Boundary Layer Nucleation Rates are very High
- ~10⁶-10⁸ X higher than predicted for binary H₂SO₄-H₂O nucleation
- $J \sim [H_2SO_4]^p$, 1 <p< 2 rather than $J \sim [H_2SO_4]^p$, p> 6-8
- 2. Nanoparticle Growth Rates are very High.

$$1 < \Gamma < 50; \ \Gamma = \frac{GR}{GR_{H_sSO_4}}$$

Growth Factors: Γ =GR/GR_{H2SO4}

Relationship between NPF Rates and Nucleation Rates

Kuang et al., ACPD, 2010

Probability that a Freshly Nucleated Particle Grows to 3 nm: GDE Solution

Values of L_{Γ} during Nucleation and Growth Events

Kuang et al., ACPD, 2010

Question 1:

Why are *Growth Rates* of Freshly Nucleated Particles So High?

$$dD_p/dt = \Gamma \cdot dD_p/dt_{H_2SO_4}$$

(i.e., why is Γ so high, or equivalently, why is L_{Γ} so low?)

Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS)

The TDCIMS (Atlanta, 7/23/09)

Jim Smith, NCAR & U. Kuopio

Atlanta, July 25, 2009: Composition of 20nm particles

TDCIMS observations at Hyytiälä on 9 April 2007 show aminium ions with deprotonated acids in 10nm particles

Smith et al., PNAS, 2010, DOI: 10.1073/pnas.0912127107

TOF-TDCIMS analysis of 14 nm diameter particles collected during a NPF event in Boulder, CO

Aminium ion ratios suggest that organic and inorganic salt formation may be a universal, and important, growth process

<u>Conclusion:</u> Aminium salts are largely responsible for high growth rates (i.e., $\Gamma >>1$)

Smith et al., PNAS, 2010, DOI: 10.1073/pnas.0912127107

What are the physical-chemical properties of organic salts? Results from hygroscopicity and volatility measurements

Smith et al., PNAS, 2010, DOI: 10.1073/pnas.0912127107

Conclusion Regarding High dD_p/dt

Alkylammonium carboxylate salts, presumably formed by reactions of amine + carboxylic acid gases, contribute significantly to high *growth rates* of freshly nucleated particles everywhere that we have made TDCIMS measurements.

Question 2:

Why are

Boundary Layer Nucleation Rates so High?

Our Experimental Strategy: Bridge the gap: Molecules to Clusters to NPs

Ku & de la Mora, AST 2009

Chemical Ionization and Ion Transport to MS Inlet In the Cluster-CIMS

Two operation modes

Transverse ion mode

Flow tube mode

Zhao et al., JGR, 2010. DOI: 10.1029/2009JD012606

The Cluster CIMS (Atlanta, 7/23/09)

Jun Zhao, NCAR

First Complete Measurements of Particle Number Distributions: Nucleating Vapor Molecules, Molecular Clusters, 1 nm Particles & Beyond

UMN & NCAR Team, Aerosol Sci. Technol. submitted, 2010

 N_3/N_1 Vs Total Amines: Atlanta, 8/7/09

Tentative Conclusion Regarding High Nucleation Rates

Concentrations of neutral, stable molecular clusters formed by nucleation are positively correlated with concentrations of gas phase amines. We hypothesize that reactions between amines and (H₂SO₄)_n clusters lead to stable clusters that form new particles. Recent Quotation from Murray Johnston et al APCD article: "Amine exchange into ammonium bisulfate and ammonium nitrate nuclei"

Uptake coefficients (reaction probabilities) were found to be near unity, implying that complete exchange of ammonia in small salt clusters by amine would be expected to occur within several seconds to minutes in the ambient atmosphere. These results suggest that if salt clusters are a component of the sub-3nm cluster pool, they are likely to be aminium salts rather than ammonium salts, even if they were initially formed as ammonium salts.

Bzdek, Ridge, Johnston, ACPD discuss.net/10/45/2010

Two-Component Nucleation Model: Conceptual Model 2. $SA_2+X \rightarrow SA_2X$.

$$SA + SA \xleftarrow[k1f]{k1b} (SA)_2$$
$$(SA)_2 + X \xrightarrow[k2]{k2} (SA)_2 \cdot X$$

$$J = \frac{d\left[\left(SA\right)_{2} \cdot X\right]}{dt} = k_{2}\left[\left(SA\right)_{2}\right]\left[X\right] = \frac{k_{2}\left[X\right]}{k_{1b} + \kappa_{2} + k_{2}\left[X\right]} \cdot \frac{1}{2}k_{1f}\left[SA\right]^{2}$$

<u>NOTE</u>: This Mechanism is consistent with Anderson, Siepmann, McMurry, VandeVondelele, *JACS*, 2008 and uses Hanson & Lovejoy, *JPhysChem* 2006 thermodynamic properties for SA

Conceptual Two-Component Nucleation Model: $SA_2+X \rightarrow SA_2X$.

$$J = \frac{1}{2}\beta_{11}N_{1}^{2}\frac{k_{2}[X]}{k_{1b} + \kappa_{2} + k_{2}[X]}$$

 $k_{1b} \cong 10^4 \text{ s}^{-1} \text{ to } 10^5 \text{ s}^{-1} \text{ (Hanson)}$ $\kappa_2 = 0.1 \sim 0.01 \text{ s}^{-1} \text{ (integral over size distribution)}$ $k_2 = 3.4 \times 10^{-10} \frac{cm^3}{molecule \cdot s} \text{ (hard sphere collision rate)}$ $\begin{bmatrix} X \end{bmatrix} = 2.34 \times 10^9 \text{ to } 2.34 \times 10^{10} \frac{molecules}{cm^3} \text{ (10-100 ppt, dimethy amine; Hanson)}$ $10^{-5} < \frac{k_2 \begin{bmatrix} X \end{bmatrix}}{k_1 + \kappa_2 + k_2 \begin{bmatrix} X \end{bmatrix}} < 10^{-3}$

NOTE: Small critical size (SA_2X) allows using a chemical kinetics framework rather than classical nucleation theory for nucleation rates, J. This may avoid some of the hurdles to earlier treatments of this problem.

UMN & NCAR Team, unpublished, 2010

Empirical Observation: $J_{1 nm} = K[H_2SO_4]^2$ (Applies to measurements in diverse environments)

Conclusions

- *L_Γ* determines whether or not Nucleation leads to NPF
 Nucleation important due to high *J* and *GR* (*i.e.*, *Γ*)
- Organic Salts (e.g., amines + organic acids) responsible, at least in part, for high *GR* (*i.e.*, for $\Gamma > 1$)
- $[H_2SO_4]_3/[H_2SO_4]=N_3/N_1$ correlated with amines.
- $1 \times 10^{-4} < [H_2SO_4]_3 / [H_2SO_4] < 1 \times 10^{-2}$
- Small critical size (SA₂X ?) of stable nuclei may allow for a relatively simple theory for nucleation rates, based on chemical kinetics rather than CNT.

A Typical Mass Spectrum During Non-Nucleation Periods

Zhao et al., submitted, 2009

Nucleation event on 09/26/2008, Boulder

Zhao et al., submitted, 2009

Concentrations of Neutral Clusters Containing 3 & 4 Sulfuric Acid Molecules (m/z=293 & 391)

Date	Reaction time (sec)	n=1 ^a	n=3ª	n=4ª
	0.56	9.7 x 10 ⁷	2.7 x 10 ⁴	1.3 x 10 ⁴
Boulder,	0.37	8.1 x 10 ⁷	$1.2 \ge 10^4$	6.3 x 10 ³
September 26,2008	0.17	$1.2 \ge 10^8$	9.8 x 10 ⁴	6.6 x 10 ⁴
	Average ^b	8.9(10.0)x10 ⁷	2.0 (4.6) x 10 ⁴	9.7 (26.0) x 10 ³
Manitou	1.42	5.6 x 10 ⁶	8.3 x 10 ³	$1.6 \ge 10^4$
Experimental Forest,	0.46	7.5 x 10 ⁶	$1.0 \ge 10^4$	1.1 x 10 ⁴
August 6,2008	Average	6.5 x 10 ⁶	9.3 x 10 ³	1.3 x 10 ⁴

^a n= 1, 3 and 4 correspond to sulfuric acid monomer, trimer & tetramer.

^b Averaged values are taken over the two longer reaction times. The values in parenthesis are averaged over all three reaction times.

First Atmospheric Observations: Observed & Theoretical NPF Dependence on [H₂SO₄]

Weber et al., Chem Eng. Comm.151:53-64, 1996.

What are amines and why are they possibly so important for a particle's first few hours of growth?

Table 1. Electronic energies computed for the dimer formation reactions at different levels of theory. DZ and TZ correspond to aug-cc-pV(D+d)Z and aug-cc-pV(T+d)Z, respectively. All values correspond to geometries optimized at the RI-MP2/aug-cc-pV(D+d)Z level.

Reaction	$\Delta E_0,$ RI-MP2/DZ kcal/mol	$\Delta E_0,$ RI-MP2/TZ kcal/mol	$\Delta E_0,$ RI-CC2/TZ kcal/mol
$H_2SO_4 + NH_3 \leftrightarrow H_2SO_4 \bullet NH_3$ NH ₂	-16.99	-17.08	-17.37
$H_2SO_4 + CH_3NH_2 \leftrightarrow H_2SO_4 \bullet CH_3NH_2$	-21.91	-21.90	-22.84
$H_2SO_4 + CH_3CH_2NH_2 \leftrightarrow H_2SO_4 \bullet CH_3CH_2NH_2$	-23.78	-23.40	-24.53
$H_2SO_4 + (CH_3)_2NH \leftrightarrow H_2SO_4 \bullet (CH_3)_2NH$	-26.73	-26.06	-27.22
$H_2SO_4+(CH_3CH_2)_2NH \leftrightarrow H_2SO_4\bullet(CH_3CH_2)$ amines	-30.05	-29.09	-30.19
$H_2SO_4 + (CH_3)_3N \leftrightarrow H_2SO_4 \bullet (CH_3)_3N$	-28.71	-27.51	-28.47
$H_2SO_4 + (CH_3CH_2)_3N \leftrightarrow H_2SO_4 \bullet (CH_3CH_2)_3N$	-33.09	-31.05	-32.16
$H_2SO_4 + (CH_2CH_2)NH(CH_2) \leftrightarrow H_2SO_4 \bullet (CH_2CH_2)NH(CH_2)$	-28.14	-27.34	-28.48

Kurtén et al., ACP, 2008

Species that Contribute to Growth of Freshly Nucleated Particles in Tecamac, Mexico

TDCIMS observations at Tecamac (Mexico City) show aminium ions in 8-10 nm diameter particles

Smith et al., PNAS, 2010, DOI: 10.1073/pnas.0912127107

Time of Flight (TOF) Measurements of 14 nm Particles, Boulder, CO (17 May, 2009): TDCIMS

Minnesota-NCAR Research Strategy

The focus of our research has been to develop methods to measure those "extremely minute quantities."

<u>growth rates</u>: TDCIMS, Nano TDMA, DEG SMPS, PSD, H₂SO₄ CIMS <u>nucleation rates</u>: Cluster CIMS, AmpMS, DEG SMPS