ARM Scanning Cloud and Precipitation Radar

Nitin Bharadwaj and Kevin Widener

Outline

- ARM Radar Deployment
- Precipitation and Cloud Radars
- Polarization diversity
- Operational considerations
- Scan strategy
- Data Formats

C-Band Scanning ARM Precipitation Radar (C-SAPR)

- Advanced Radar Corporation
- TITAN Processing Environment

Transmitter

Type Center frequency Peak power output Average power output Pulse width Polarization

Max. Duty Cycle PRF Antenna and Pedestal Type (diameter) 3-dB Beam width Gain ICPR Two-way Radome loss Scan rate Acceleration <u>Receiver</u> Type Dynamic range Noise figure Sampling rate

Decimation factor

Video Bandwidth

IERGY

 $\begin{array}{l} {\rm Magnetron}\\ 5625 \pm 25 \ {\rm MHz}\\ 250 \ {\rm kW}\\ 250 \ {\rm W}\\ 200 \ ns$ - 2 $\mu s\\ {\rm Dual \ polarization, \ Simultaneous \ H}\\ {\rm and \ V}\\ 0.1\%\\ 200 \ {\rm Hz}$ - 5kHz \\ \end{array}

Parabolic reflector (4.27 m) 0.98° 45.0 dB 32 dB 1 dB up to $36^{\circ}/s$ up to $30^{\circ}/s^{2}$

Dual-channel HiQ digital > 80 dB 2.8 dB 40 MHz Adjustable Adjustable

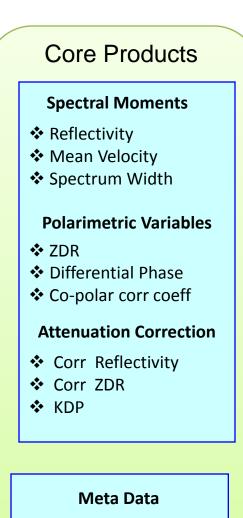
X-Band Scanning ARM Precipitation Radar (X-SAPR)

- Radtec Engineering Inc
- RVP900 and IRIS Processing Environment

Transmitter

Type Center frequency Peak power output Average power output Pulse width Polarization

Max. Duty Cycle PRF Antenna and Pedestal Type (diameter) 3-dB Beam width Gain Two-way Radome loss Azimuth scan rate Elevation scan rate Elevation scan rate Receiver Type Dynamic range Noise figure Sampling rate Decimation factor


Video Bandwidth

FNERGY

Magnetron 9500 ± 30 MHz 200 kW 200 W $200 \text{ ns} - 4.5 \mu s$ Dual polarization, Simultaneous H and V 0.1%200 Hz - 5 kHz

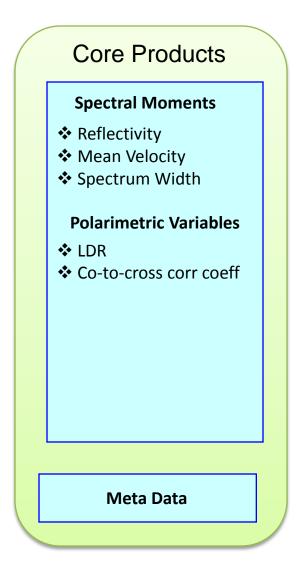
2.4 m offset feed 0.9° 45.0 dB 0.6 dB up to $24^{\circ}/s$ up to $15^{\circ}/s$

Vaisala Sigmet RVP900 < 105 dB 3.0 dB 80 MHz Adjustable Adjustable

W-Band Scanning ARM Cloud Radar (W-SACR)

Prosensing Inc

Prosensing Signal processor


Transmitter

Type

Center frequency Peak power output Pulse width Polarization Max. Duty Cycle PRF Antenna and Pedestal Type (diameter) 3-dB Beam width Gain Cross polarization Two-way Radome loss Azimuth scan rate Elevation scan rate Receiver Type Dynamic range Noise figure Sampling rate Decimation factor Video Bandwidth

Extended Interaction Klystron Amplifier (EIKA) 94000 \pm 10 MHz 1.7 kW 50 ns - 2 μ s Transmit horizontal linear 1% Up to 20 kHz Parabolic reflector (0.9 m) 0.29° 54.5 dB -27 dB 2.0 dB Up to 36°/s Up to 20°/s

Dual polarization digital receiver > 80 dB 6.0 dB 120 MHz Adjustable Adjustable

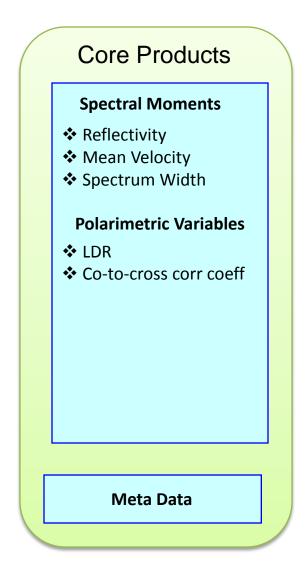
ASR Science Team Meeting March 15-19, 2010

Ka-Band Scanning ARM Cloud Radar (Ka-SACR)

Prosensing Inc

Prosensing Signal processor

Transmitter


Type

Center frequency Peak power output Pulse width Polarization Max. Duty Cycle PRF Antenna and Pedestal Type (diameter) 3-dB Beam width Gain Cross polarization Two-way Radome loss Azimuth scan rate Elevation scan rate Receiver Type Dynamic range Noise figure Sampling rate Decimation factor Video Bandwidth

Extended Interaction Klystron Amplifier (EIKA) 35300 ± 10 MHz 1.7 kW $50 \text{ ns} - 13 \mu \text{s}$ Transmit horizontal linear 5%Up to- 10 kHz Parabolic reflector (1.82 m) 0.33° 53.5.0 dB 27 dP

-27 dB 1.5 dB Up to 36°/s Up to 20°/s

Dual polarization digital receiver > 80 dB 3.5 dB 120 MHz Adjustable Adjustable

ASR Science Team Meeting March 15-19, 2010

X-Band Scanning ARM Cloud Radar (X-SACR)

- Prosensing Inc
- Prosensing Signal processor

Transmitter

Type

- Center frequency Peak power output Average power output Pulse width Polarization
- Max. Duty Cycle PRF Antenna and Pedestal Type (diameter) 3-dB Beam width Gain Cross polarization Azimuth scan rate Elevation scan rate Receiver Type Dynamic range Noise figure Sampling rate Decimation factor Video Bandwidth

ARN

Dual polarization, Simultaneous H and V 1% Up to- 10 kHz Parabolic reflector (1.82 m) 1.40° 42.0 dB -30 dB Up to $36^{\circ}/s$ Up to $20^{\circ}/s$ Dual-channel digital > 80 dB

4.5 dB120 MHz Adjustable Adjustable

(TWTA)

20.0 kW

200 W

 $9510 \pm 50 \text{ MHz}$

100 ns - 40 µs

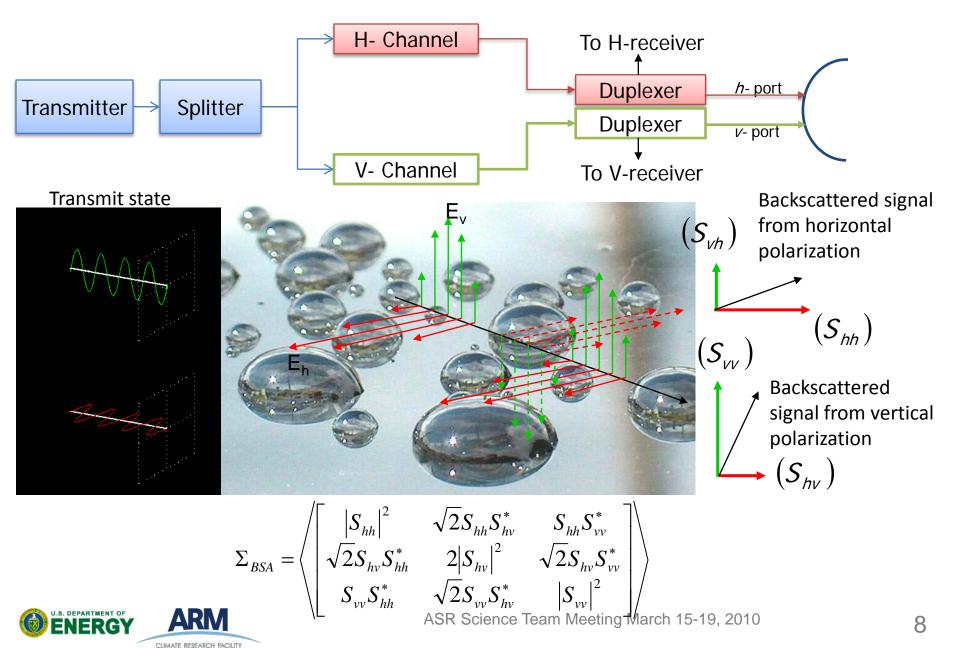
Core Products Spectral Moments Reflectivity Traveling Wave Tube Amplifier Mean Velocity Spectrum Width

Polarimetric Variables

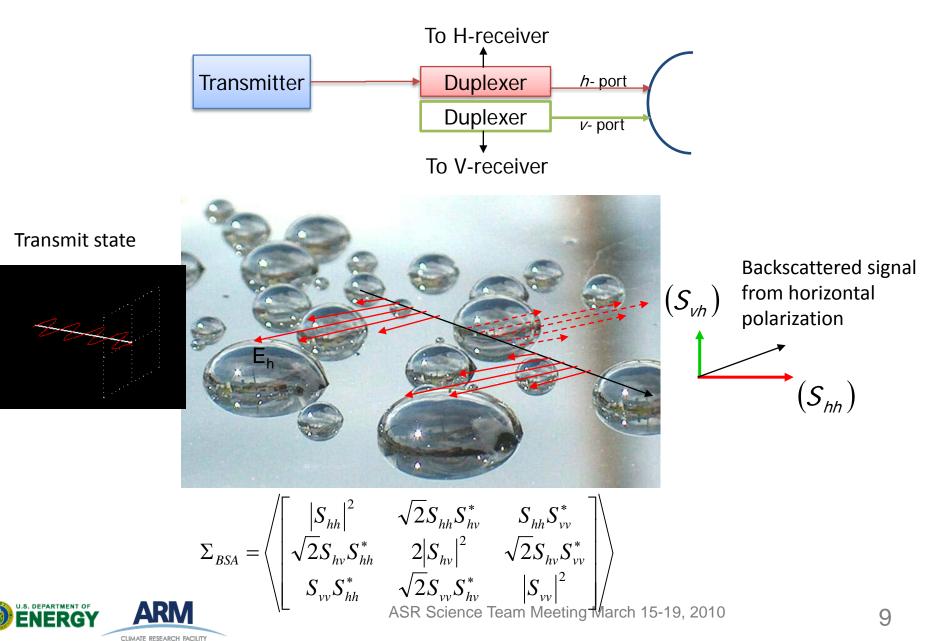
✤ 7DR

- Differential Phase
- Co-polar corr coeff

Attenuation Correction

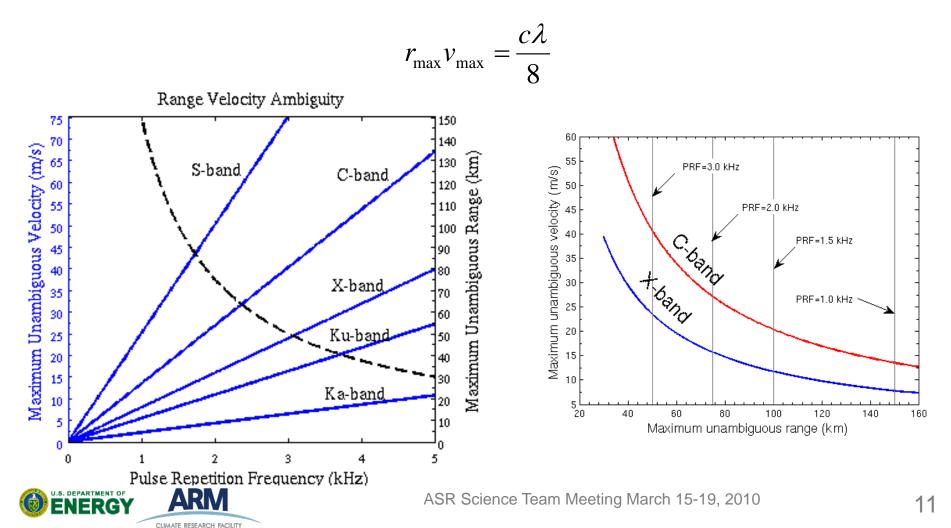

- ✤ Corr Reflectivity
- Corr ZDR
- ✤ KDP

Meta Data

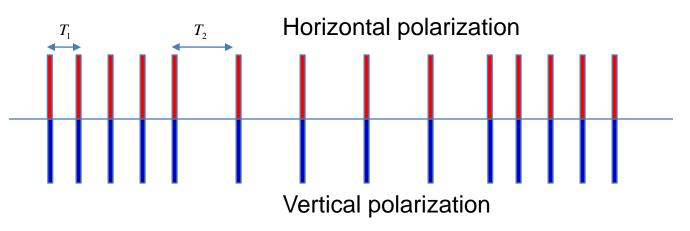

ASR Science Team Meeting March 15-19, 2010

X-SAPR, X-SACR, C-SAPR Dual Polarization Operations: Simultaneous Transmit and Receive (STAR) mode

Ka-SACR and W-SACR Dual Polarization Operations: Horizontal Polarization Mode


Consideration for operations

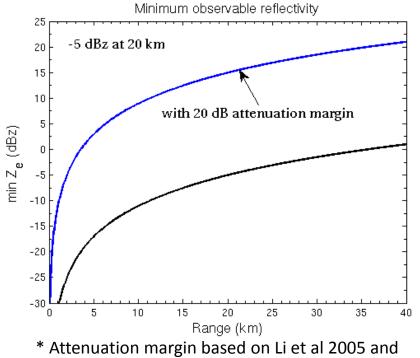
- Range velocity ambiguity
- Sensitivity
- Ground clutter suppression
- Calibration and verification
- Attenuation correction


Range-velocity ambiguity

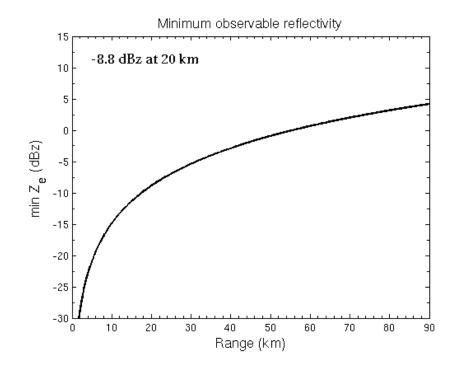
Maximum unambiguous range-velocity space is constrained by radar wavelength

Range-velocity ambiguity

- At higher frequencies a uniform PRF waveform generally does not meet requirements
- Dual-PRF waveform is suitable for operations



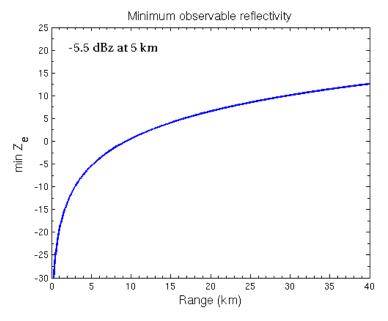
Pulse width reduced on magnetrons for stable operation



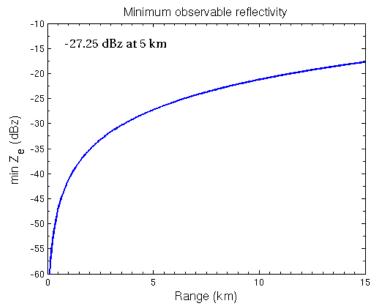
Sensitivity of X-SAPR

Sensitivity of C-SAPR

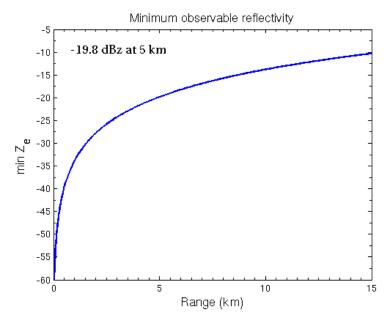
Chandrasekar et al 2009.



✤ Range resolution: 90 m



[✤] Range resolution: 60 m


Sensitivity of X-SACR

Sensitivity of W-SACR

Sensitivity of Ka-SACR

- ✤ Range resolution: 60 m
- SNR=0 dB
- Pulse compression waveform is being developed

Ground clutter suppression

X-SAPR : Day 1 solution as provided by vendor

- Chebyshev filter
- GMAP: spectral domain filtering from Vaisala Sigmet RVP900 processor
- □ Clutter filter on/off can be selected based on elevation angle
- C-SAPR : Day 1 solution as provided by vendor
 - Notch filter
 - □ Spectral domain clutter suppression
 - Clutter filter on/on selection: Clutter Mitigation Decision (CMD) from a fuzzy logic algorithm

Calibration and verification

Calibration

- □ Receiver calibration (dual channel)
- Solar calibration
- ZH calibration
- ZDR Calibration
 - Using vertically pointing mode
 - Using precipitation medium
 - Self consistency approach

Verification

- Cross-comparison between radars
- Verification with disdrometers

Attenuation Correction

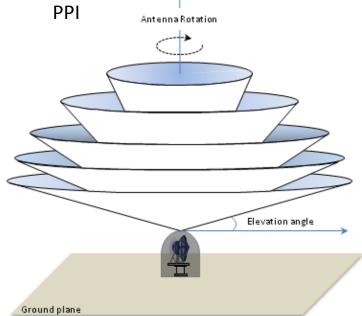
Attenuation correction product will be provided

✤ X-SAPR

- □ Vaisala's KDP estimation algorithm
- Vaisala's version of attenuation correction algorithm
- □ Mostly for rain and not mixed phase precipitation

C-SAPR

- □ ARC's KDP estimation algorithm
- □ ARC's version of attenuation correction algorithm
- □ Mostly for rain and not mixed phase precipitation
- Attenuation Correction only applicable with no signal extinction
- Mixed phase precipitation is an active research area



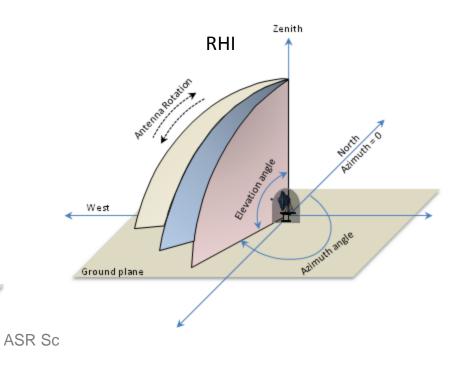
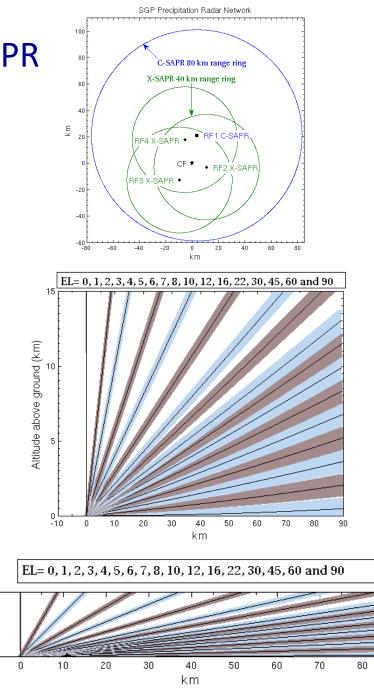

Scan Modes

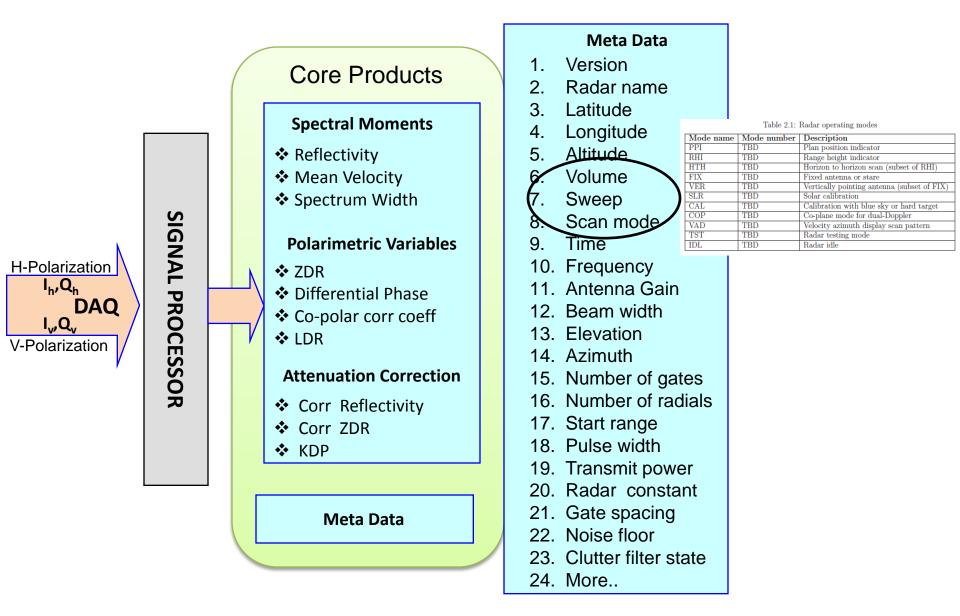
Table	2.1:	Radar	operating	modes	

Mode name	Mode number	Description
PPI	TBD	Plan position indicator
RHI	TBD	Range height indicator
HTH	TBD	Horizon to horizon scan (subset of RHI)
FIX	TBD	Fixed antenna or stare
VER	TBD	Vertically pointing antenna (subset of FIX)
SLR	TBD	Solar calibration
CAL	TBD	Calibration with blue sky or hard target
COP	TBD	Co-plane mode for dual-Doppler
VAD	TBD	Velocity azimuth display scan pattern
TST	TBD	Radar testing mode
IDL	TBD	Radar idle



Example : Volume scan for X-SAPR

- 17 tilts with PPI sweeps of 360 degree (including zenith)
- 24 cuts with RHI sweeps of 90 degree (15 deg interval in azimuth)
- One of the 24 RHI is over Central Facility
- ``Bird bath'' (Zenith sweep) for ZDR calibration
- Scan speed 22.5 deg/s
- ~7 min (PPI+RHI) volume update
- Dual-PRF waveform
- Unambiguous range: 60 km
- Unambiguous velocity: 39 m/s
- Range resolution: 60 m
- Azimuth resolution: 0.9 deg


90

A٤

(m) fround (km)

Altitude above

Data Format

Data Format

Radar data formats used

□ Universal Format (UF): CSU-CHILL, SIGMET, SPOL,

 $\square MDV : ARC, NCAR$

□ NETCDF : NCAR, ARM,, CASA, SIGMET

HDF : TRMM

□ Radar specific binary files

✤ NETCDF-4

□ NASA funded effort to unify features of NETCDF-3 and HDF-5

- □ NETCDF-4 is freely available
- ❑ MATLAB provides toolbox to read NETCDF and HDF files
- □ C, C++, Fortran and JAVA interfaces are freely available
- Use standard NETCDF format

(http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html)

Data Format

- ARM radar data storage
 - □ Vertically pointing radar
 - NetCDF files
 - □ Stored as daily files
 - Spectra stored
- ARM Scanning radars
 - NetCDF files
 - □ Store files based on volumes and not daily files
 - Raw timeseries stored only on request (this may not be archived by ARM)
 - Raw timeseries stored for vertical pointing mode

Discussion ...

