

A Global Perspective on Aerosol from Low-Volatility Organic Compounds

Havala O. T. Pye and John H. Seinfeld

Departments of Chemical Engineering and Environmental Science and Engineering California Institute of Technology

> 2010 ASR Science Team Meeting Department of Energy March 15-19, 2010

Low-Volatility Organics

Recent work indicates there is a large potential for low-volatility organic compounds ($C^* < 10^6 \,\mu g/m^3$) to form organic aerosol

Low-Volatility Organics

Recent work indicates there is a large potential for low volatility organic compounds ($C^* < 10^6 \,\mu g/m^3$) to form organic aerosol

Gas-Particle Partitioning

A gas phase parent HC reacts to form several semi-volatile compounds:

$$HC + Ox \to \alpha_1 G_1 + \alpha_2 G_2 + \mathsf{K} + \alpha_i G_i$$

 $G_i \leftrightarrow A_i$

The relative amount in each phase is governed by absorptive partitioning:

$$K_{i} = \frac{[A_{i}]}{[G_{i}][M_{O}]} = \frac{RT}{M_{w}} \gamma_{i} P_{i}^{o}$$
$$M_{O} = \sum_{i} [A_{i}] + other$$
$$K_{i} \approx \frac{1}{C_{i}} *$$

- A_i aerosol-phase concentration
- G_i gas-phase concentration
- α_i mass-based stoichiometric coefficient
- M_O total aerosol mass for partitioning

 K_i equilibrium partitioning coefficient P_i^o vapor presure of pure species i at T C_i^* saturation vapor pressure

Gas-Particle Partitioning

Fraction of Semivolatile in Aerosol Phase vs. Saturation Vapor Pressure $(M_o = 10 \ \mu g/m^3)$

Questions

 How much aerosol do SVOCs and IVOCs produce globally?

• Can we simulate reasonable surface concentrations with semivolatile POA in a global model?

• What are the relative contributions of modern and fossil carbon to global organic aerosol?

Model Overview

Objective: Estimate the contribution of SVOCs and IVOCs to organic aerosol in GEOS-Chem (v8-01-04, 2x2.5 assimilated meteorology and 4x5 GCM meteorology)

Category	Precursor/description	Oxidants		
Traditiona	Traditional GEOS-Chem SOA (Henze et al., ACP, 2008):			
SOA ₁	Pinene, sabinene, D3-carene, limonene, terpenes	O ₃ , OH, NO ₃		
SOA ₂	Myrcene, linalool, terpene-4-ol, ocimene	O ₃ , OH, NO ₃		
SOA ₃	β -caryophyllene, α -humulene	O ₃ , OH		
SOA ₄	Isoprene	ОН		
SOA ₅	Aromatics (benzene, toluene, xylene)	OH followed by HO ₂ or NO		
Traditional GEOS-Chem primary organic aerosol:				
POA	Nonvolatile primary organic aerosol	none		

Model Overview

Objective: Estimate the contribution of SVOCs and IVOCs to organic aerosol in GEOS-Chem (v8-01-04, 2x2.5 assimilated meteorology and 4x5 GCM meteorology)

Category	Precursor/description	Oxidants	
Traditional GEOS-Chem SOA (Henze et al., ACP, 2008):			
SOA ₁	Pinene, sabinene, D3-carene, limonene, terpenes	O ₃ , OH, NO ₃	
SOA ₂	Myrcene, linalool, terpene-4-ol, ocimene	O ₃ , OH, NO ₃	
SOA ₃	β -caryophyllene, α -humulene	O ₃ , OH	
SOA ₄	Isoprene	ОН	
SOA ₅	Aromatics (benzene, toluene, xylene)	OH followed by HO ₂ or NO	
New aeros	New aerosol from low volatility organic compounds (this work):		
ΡΟΑ	Emissions of SVOCs that partition to the aerosol phase	none	
SOA _{SVOC}	SOA formed from SVOC emissions oxidized in the gas phase	OH	
SOA _{IVOC}	SOA from IVOCs (naphthalene-like)	OH followed by HO ₂ or NO	

What are the SVOC & IVOC emissions?

Region	SVOC emissions	IVOC emissions	Works
Global	1.27 x POA (1 st estimate) ~2 x POA (best estimate)	~0.5 x POA (averaged)	This work: Pye and Seinfeld, ACPD (2010)
US Regional	1 x POA	1.5 x POA	Robinson et al., Science (2007) Shrivastava et al., JGR (2008)
Mexico City	3 x POA	4.5 x POA	Tsimpidi et al., ACP (2010) Hodzic et al., ACPD (2010)

- Results indicate current POA inventories may be missing 50% or more of the SVOC emissions.
- Fossil fuel combustion sources are estimated to produce relatively more IVOCs than wood burning leading to large regional IVOC:POA ratios in the US and Mexico City but low IVOC:POA ratios globally.

SVOC and IVOC Emissions

SVOC Emissions

Parameters for wood smoke POA from Shrivastava et al., ES&T (2006)

SVOC Emissions

- Parameters for wood smoke POA from Shrivastava et al., ES&T (2006)
- Non-volatile POA emission inventory scaled (up 27%) to represent all SVOCs according to Schauer et al., ES&T (2001) Gas phase SVOC surrogate

$$\frac{Jas - phase \ SvOC \ surrogale}{Aerosol \ phase \ emission} = 0.2$$

SVOC Oxidation

Parameter	Value
Reduction in volatility	100x
Increase in mass	50%
k _{OH} (cm ³ molec ⁻¹ s ⁻¹)	2x10 ⁻¹¹
Number of oxidations	1

Oxidation in gas phase based on Grieshop et al., ACP (2009) and Robinson et al., Science (2007) with some adjustment

SVOC Global Budget

Pie indicates annual net production in TgC (32 TgC total)

SVOC and O-SVOC are also wet and dry deposited in gas phase (not shown), all numbers for year 2000

IVOC Emissions

IVOC emissions

- Distributed like naphthalene
- Scaled up to represent all IVOCs

Andreae and Merlet, GBC (2001); Schauer et al.,ES&T (2001); Zhang and Tao, Atm. Env.(2009)

IVOC Emissions

IVOC emissions

- Distributed like naphthalene
- Scaled up to represent all IVOCs

Andreae and Merlet, GBC (2001); Schauer et al., ES&T (2001); Zhang and Tao, Atm. Env. (2009)

U.S. IVOC emissions: 1.5 TgC/yr

Global IVOC emissions: 15 TgC/yr

IVOC Oxidation

Based on naphthalene:

 $IVOC + OH \rightarrow RO_{2}$ $RO_{2} + HO_{2} \rightarrow \alpha_{1}P_{1}$ $RO_{2} + NO \rightarrow \alpha_{2}P_{2} + \alpha_{3}P_{3}$

Product	Alpha	K (m³/µg)	C* (µg/m³)
1	0.73		<10 ⁻³
2	0.21	0.59	1.7
3	1.07	0.0037	270

Parameters for IVOC oxidation from Chan et al., ACP (2009); Henze et al., ACP (2008)

SOA Production from IVOCs

Global Estimate of OA Sources

SECONDARY SOURCES (Tg/yr)	
Terpenes*	8
Isoprene*	11
Aromatics	3
SVOCs (SOA)	38
IVOCs	5
PRIMARY SOURCES (Tg/yr)	
SVOCs (POA)	1
TOTAL (Tg/yr)	67

* Depends on resolution, biogenic inventory, and meteorology (these numbers: 2x2.5 GEOS4 only considering absorptive partitioning)

Questions

- How much aerosol do SVOCs and IVOCs produce globally?
 - SVOCs are predicted to be the dominant global OA source
 - SVOCs + IVOCs lead to about 44 Tg/yr of net OA production

Simulated Aerosol Composition

Simulated Aerosol Composition

Questions

Can we simulate reasonable surface concentrations with semivolatile POA in a global model?

•Surface concentrations are substantially underestimated unless SVOC emissions are significantly scaled up or the volatility of the emissions is reduced

- There is a larger pool of organics to form aerosol
 - SVOC emissions are 27% higher than the traditional POA inventory
 - IVOCs represent a new source of aerosol
- However, surface concentrations are lower
 - Generally, 50% or more of the SVOC emissions evaporate
 - SOA from SVOCs is semivolatile as well
 - IVOCs have a relatively low yield of aerosol (~30%)

Significant Amount of Modern OC

Fraction Modern C of SVOC Emissions

Questions

What are the relative contributions of modern and fossil carbon to US organic aerosol?

- Total OA over the US is likely dominated by modern C
 - Summer aerosol contains significant amounts of modern carbon due to biogenic SOA formation.
 - SVOC aerosol (either POA or SOA) contributes significantly to surface concentrations in the winter and summer over the U.S.
 - SVOC aerosol over the US is likely dominated by modern C due to biomass and biofuel burning emissions
- Aerosol in remote global regions may have a larger fossil component due to low-NO_x oxidation and formation of nonvolatile SOA from aromatics and IVOCs

Conclusions

- Approximately 50% of the SVOC carbon is responsible for net aerosol production (SVOC aerosol source: 39 Tg/yr)
- The yield of aerosol from IVOCs is ~30% (IVOC aerosol source: 5 Tg/yr)
- Revised simulation does not provide better measurement/model agreement
 - Sensitivity simulations indicate that SVOC emissions may be significantly underestimated
 - Errors in the SVOC emission volatility could have an impact on estimated OA concentrations
- Organic aerosol over the US is likely dominated by modern carbon

Extra

Aerosol Concentrations

Total Organic Aerosol During Winter and Summer 2000

Summer (JJA)

Winter OC Concentration

2

0

3

[µgC/m³]

4

- Simulated OC values shown on grid
- Observations from the IMPROVE network shown as circles
- Data from DJF 2000
- The traditional simulation provides a better estimate of surface OC concentrations than the revised simulation

Effect of Emission Parameters

Simulated DJF OC concentration relative to traditional simulation

0

-0.7

-0.7

-1.4

Revised - Traditional

Double IVOC Emissions From Baseline

Double POA Inventory to get SVOC Emissions

1.4 [μgC/m³]

Effect of Volatility Parameters

Simulated DJF OC concentration relative to traditional simulation

Effect of Henry's Law Parameters

Simulated DJF OC concentration relative to traditional simulation

