

Radiative Heating in Underexplored Bands Campaign (RHUBC-II) in Chile Dave Turner¹ and Eli Mlawer²

¹ University of Wisconsin – Madison
 ² Atmospheric and Environmental Research, Inc.

RHUBC-II Breakout Session ASR 1st Annual Science Team Meeting Bethesda, Maryland 15 March 2010

What is the Water Vapor Continuum?

- Computing the radiative contribution for a given molecule requires that the shape of the absorption line is well-known
- The H₂O line shape is not well-known
 - Assuming a Lorentzian line shape (impact approximation) grossly over-estimates the radiative contribution in the wings
- Current state-of-art parameterizations treats the contribution from each H₂O line as two components:
 - Local contribution
 - Continuum
- H₂O continuum models are semi-empirical fits to lab and atmospheric data

Water Vapor Continuum Tutorial (1)

Water Vapor Continuum Tutorial (2)

Water Vapor Continuum Tutorial (3)

Water Vapor Continuum Tutorial (4)

Water Vapor Continuum Tutorial (5)

Water Vapor Continuum Tutorial (6)

Typical Spectral Heating Rate Profiles in the Infrared

$$\frac{dT}{dt} = \frac{-1}{\rho C_p} \frac{dF_{net}}{dz}$$

Spectral line absorption by different species
Vertical concentration and gradient of absorbers
T-dependence of the Planck function

Uncertainty in the WV Cntnm in Far-IR

Impact on Net Flux Profiles

This translates into a very important (i.e., huge!) difference in radiative heating rates!

RHUBC Details

RHUBC-I

- ARM North Slope of Alaska Site, Barrow, AK (71°N, 157°E, 8 m MSL)
- February March 2007, 70 radiosondes launched
- Minimum PWV: 0.95 mm (observed)
- 2 far-IR / IR interferometers
- 3 sub-millimeter radiometers for PWV observations
- Lidar for cirrus detection
- RHUBC-II
 - Cerro Toco, Chile (23°S, 68°E, 5340 m MSL)
 - August October 2009, 144 radiosondes were launched
 - Minimum PWV: ~0.2 mm
 - 3 far-IR / IR interferometers
 - 1 sub-millimeter radiometer for PWV
 - 1 sub-millimeter FTS
 - 1 near-IR FTS ,
 - High-spectral resolution from 1.0 µm to 3000 µm !
 - Lidar for cirrus detection

Additional support from:

NASA Italian Research Foundation Smithsonian

BAMS paper accepted

Feb 2008

View from Cerro Toco Location

Site location

Instruments were located here

RHUBC-II Field Site

Transmission in the Infrared

Challenges

- Export issue with AERI component
- Chilean govn't request at the 23rd hour
- Local contractor issues
- Unheard of weather (twice!)
- "Speed of Chile"
- Generator problems
- Instruments not behaving
- Oxygen impacts

Nonetheless, good data was collected!

Radiosondes

Deck weight

REFIR-PAD

Sub-mm FTS

On-Site Lead

Time Period	Lead
22 Jul – 31 Jul	Troy Culgan (BOM)
1 Aug – 19 Aug	Dave Turner (UW)
20 Aug – 30 Aug	Luca Palchetti (IFAC-CNR)
31 Aug – 11 Sep	Jen Delamere (AER)
12 Sep – 23 Sep	Tim Wagner (UW)
24 Sep – 5 Oct	Dave Tobin (UW)
6 Oct – 24 Oct	Eli Mlawer (AER)
25 Oct – 31 Oct	Troy Culgan (BOM)

Planned start date:10 AugustActual start date:15 AugustEnd date:24 October

Radiosonde Observed PWV

Spectral Observations 170 GHz (5.6 cm⁻¹) to 3 µm (3000 cm⁻¹)

First ever measurement of the entire infrared spectrum from 3 to 1780 µm!

PRELIMINARY DATA

Tim's Lemma regarding the fundamental RHUBC relationship: "sky ugliness for science equals sky awesomeness for pictures"

Agenda for this Breakout Session

3:00 - 3:20	Turner	RHUBC introduction and background
3:20 – 3:35	Delamere	Summary of RHUBC-I accomplishments
3:35 – 3:50	Mlawer	Initial analysis of water vapor and PWV data
3:50 - 4:05	Mlynczak	Initial analysis of FIRST data
4:05 – 4:20	Turner (for Tobin and Palchetti)	Initial analysis of AERI and REFIR-PAD data
4:20 - 4:35	Mlawer (for Marin and Pozo)	WRF modeling results in the RHUBC-II region
4:35 - 5:00		Open discussion

Water Vapor Continuum Circa 1999

State-of-Art in Far-IR: Circa 1999

State-of-Art in Far-IR: Circa 2006

RHUBC-Idata

State-of-Art in Far-IR: After RHUBC-I

Water Vapor Continuum After RHUBC-I

WV Continuum after Work at 5 cm⁻¹

An UW / SSEC AERI

SSEC people hard at RHUBC-II

Dave Tobin

