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Strategies for using observations and cloud
resolving models simulations

» Observational nudging.
» High-resolution regional modeling.
» Vector approach to representing convection - environment

interaction.
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(a) Observational Nudging

(a) Model (NONUDGE) (b) Model (GFDDA)

(c) Obs (NOAA-CPC)
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The OLR (Wm2) signals from the NONUDGE and GFDDA (moisture nudged)
experiments, and NOAA-CPC satellite observations. The lines mark
propagation speed of 4m/s.
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The nudging moisture tendency and associated heating.

(a) Moistening Tendency by Nudging (b) ] stratiform (GFDDA)
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The perturbation of the moistening by observational nudging term (g(kgday)')
and the perturbation stratiform heating (Kday-).

» The stratiform heating variability associated with low-level (and upper
level) moistening during early (and late) stages of the MJO active phase

would be missing without nudging moisture. \3/
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(b) High resolution regional modeling
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OLR (W m2) signals (top) from the high resolution experiment, and
NOAA-CPC satellite observations and NCEP-DOE reanalysis. The lines

mark propagation speed of 5 m/s. Pacific Northwest
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The slow moistening of mid-troposphere

The time-scale of MJO is estimated from the moisture budget

equation of the high resolution simulation as follows;

a

at ~ Q 2(vertical ) T Q 2(horizontal) + Q 2(condensation)

a0 q q

+ +
at z-vertical Z-horizontal Tcondensation
T _ z-vertical z-horizontal Tcondensation
effective ~—
Tvertical Thorizontal + z-vertic:al z-c:ondensation + z-horizontal z-condensation
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Low frequency variability in moistening
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» The effective timescale is 15-25 days which corresponds to 30-50
day period of the MJO.
» It arises from small differences among the timescales of convective \7/

updraft, horizontal mixing and condensation. Pacific Northwest
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c ) Vector formulation of the convection - environment
interaction problem

» Model: WRF V3.2 at 2km resolution. 2°x2° box.
» Domains:
«  TWP-Darwin, Nov 1 2005 - April 15 2006 (TWP-ICE period).
* Manus Oct 1 2007 - Jan 31 2008 (two MJO episodes).
Niamey June 1 2006 — Sep 30 2006 (AMMA period).
» Initial and boundary conditions: GFS forecast data are used for lateral, initial,
and surface boundary conditions.
» Physics : RRTM radiation, MYJ PBL and NOAH LSM WSM6 microphysics

respectively. No cumulus parameterization.
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Convection and Environment

(a) Cloud Scale
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Cloud Types:

Clouds are categorized as deep
(convective + stratiform) or shallow
(shallow + congestus) depending
on their level of maximum and

minimum latent heating.
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» Equivalent Potential Temperature:

10

The model minimum potential temperature of convective environment is at

least 10°K higher than a clear sky environment.

For deep convective environment the equivalent potential temperature

(moist static energy ) is higher in the mid-troposphere and lower in the

lower troposphere.
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Convection and Environment
(b) Large scale

Relationship between the cloud scale and the

large scale: H = ( H H H ] )
Large-scale environment is an aggregate of the

cloud scale environment and large scale He = (QCS ‘95 9d )
convection is aggregate of the cloud scale

convection. N = ( N.. N, N, )
Assumption: @, =2 H

The problem: H| — N o H

Given large-scale equivalent potential

temperature profile, can we determine large gels — N 'ge

scale convective heating and moistening?

» The strategy: .~ 7
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Calculate the contributions of each type of Pacific Northwest
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» Vector Formulation:
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The set of ¢ is Gram-Schmidt orthogonalized.
The contributions of the new basis vectors can be
calculated.

The solution:

Large scale heating can be represented by a product
of large scale equivalent potential temperature and a
matrix.

The “physics” matrix maps cloud scale equivalent

potential temperature to a cloud scale heating.
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The orthogonal set of equivalent
potential temperature vectors and their

corresponding heating vectors

If large scale equivalent potential
temperature projects on to a
component of ., the large scale
heating has the same projection on

the corresponding component of H,,
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(c) Niamey
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» Comparison of CRM heating (K/day)

(top) with that derived from large scale
equivalent potential temperature using the

“physics” matrix P (bottom).

The matrix does a reasonable job of representing heating variability.

It overestimates shallow heating though.
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(a) CPOL radar LH
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(b) CPOL Parameterized LH

2001

41001

6001
800

1000

d

TJAN

1FEB

TMAR

0

1

2

3

Pressure (hPa)

Mean
100

200

600

800
IUQH

I —Radar I_IH
==Darameterization LH

¢

0 04 0.6

02
Heating (K/hr)

» Comparison of Latent Heating derived radar observation (Top) with a

parameterization using equivalent potential temperature from CPOL best-

estimate (Bottom).

- Some of the variability is captured. Heating in early February overestimated.

Radar latent heating data provided by Courtney Schumacher.

15

"

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



16

>

Discussion

In this talk some examples of using observational data and cloud
resolving models in the evaluation and design of parameterizations of
tropical convection are presented.

Documenting observations of the various types of clouds and the
environments that favor them is crucial for gaining better understanding
of large scale environment-convection interaction and improving the
parameterizations in low resolution regional and global models.

By coordinated and creative utilization of the extensive amount of data
expected from CINDY/DYNAMO/AMIE, major advance in understanding
and modeling MJO is possible.
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