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This case builds upon the previous

ARM/GCSS model intercomparison from
MPACE.

Several key differences from MPACE cases:
Colder temperatures (~ -22 C vs. -15 C)

Much smaller surface turbulent heat fluxes (ice-
covered vs. open ocean)

More polluted aerosol
Much smaller amounts of cloud liquid water



Goals

Document ability of models to simulate thin mixed-
phase clouds for conditions much different than
MPACE (more similar to ISDAC cases but much
colder)

Investigate causes of model differences through
process-based analysis.

Key issues:

Longevity of mixed-phase clouds in simulations, partitioning of
liquid and ice, impact on surface radiative fluxes

Sensitivity to concentration of ice crystals



Participating LES/cloud models

-SAM-PNNL (Jiwen Fan, Mikhail Ovtchinnikov)
(2D, Ax = 100 m, Bin microphysics)

-DHARMA (Ann Fridlind, Andrew Ackerman)
(3D, Ax =50 m, Bin microphysics)

-NMS-SHIPS (Gijs de Boer, Tempei Hashino)
(2D, Ax = 100 m, Bin microphysics)

-METO-LEM (Ben Shipway)
(3D, Ax =50 m, 2-moment Bulk microphysics)

-UCLA-LARC (Yali Luo)
(2D, Ax = 1000 m, 2-moment Bulk microphysics)

-RAMS-CSU (Alex Avramov, Jerry Harrington)
(2D, Ax = 1000 m, 2-moment Bulk microphysics)
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Overall, simulations tend to group into two quasi-
steady states within the first few hours: 1) peristent
mixed-phase cloud, 2) radiative-weak all-ice cloud -
suggestion of multiple equilibrium states for these
conditions?

These two states have dramatically different boundary
layer thermodynamics, cloud top radiative cooling,
turbulence/cloud dynamics, and surface radiative
fluxes.



Persistent mixed-phase clouds were largely self-
maintained in the simulations through a feedback
between supercooled liguid water, cloud top radiative
cooling, cloud dynamics, local water vapor convergence,

and condensation.
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Status: (currently in review in JAMES)

“Lessons learned™:

» There were large differences in cloud top radiative cooling even
for similar cloud profiles = impact of RT schemes (use simple
formula for RT calculations following BLCWG?)

* More complete set of diagnostics for boundary layer/turbulence
(buoyancy fluxes, vertical velocity variance, entrainment, etc.)

 Impact of spinup (initialize with liquid, but allow dynamics to
fully spin up before introducing ice)



Some key questions:

» Given the importance of cloud-radiative-cloud dynamics
feedback, what Is the impact of horizontal and vertical grid
spacing?

« What Is the role of large-scale forcing? Can variations in large-
scale forcing produce similar sensitivity (i.e., rapid collapse of the
cloud layer) as changes in ice number concentration?

 How important are the cloud-radiative-dynamical feedbacks for
cases with stronger surface forcing (e.g., MPACE)?
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