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• This case builds upon the previous 
ARM/GCSS model intercomparison from 
MPACE.

• Several key differences from MPACE cases:
o Colder temperatures (~ -22 C vs. -15 C)
o Much smaller surface turbulent heat fluxes (ice-

covered vs. open ocean)
o More polluted aerosol
o Much smaller amounts of cloud liquid water



Goals
• Document ability of models to simulate thin mixed-

phase clouds for conditions much different than 
MPACE (more similar to ISDAC cases but much 
colder)

• Investigate causes of model differences through 
process-based analysis.

• Key issues:
o Longevity of mixed-phase clouds in simulations, partitioning of 

liquid and ice, impact on surface radiative fluxes
o Sensitivity to concentration of ice crystals



-SAM-PNNL (Jiwen Fan, Mikhail Ovtchinnikov)
(2D, ∆x = 100 m, Bin microphysics)

-DHARMA (Ann Fridlind, Andrew Ackerman)
(3D, ∆x = 50 m, Bin microphysics)

-NMS-SHIPS (Gijs de Boer, Tempei Hashino)
(2D, ∆x = 100 m, Bin microphysics)

-METO-LEM (Ben Shipway)
(3D, ∆x = 50 m, 2-moment Bulk microphysics)

-UCLA-LARC (Yali Luo)
(2D, ∆x = 1000 m, 2-moment Bulk microphysics)

-RAMS-CSU (Alex Avramov, Jerry Harrington)
(2D, ∆x = 1000 m, 2-moment Bulk microphysics)
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Overall, simulations tend to group into two quasi-
steady states within the first few hours: 1) peristent 
mixed-phase cloud, 2) radiative-weak all-ice cloud 
suggestion of multiple equilibrium states for these 
conditions?

These two states have dramatically different boundary 
layer thermodynamics, cloud top radiative cooling, 
turbulence/cloud dynamics, and surface radiative 
fluxes.



Persistent mixed-phase clouds were largely self-
maintained in the simulations through a feedback 
between supercooled liquid water, cloud top radiative 
cooling, cloud dynamics, local water vapor convergence, 
and condensation.
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Status: (currently in review in JAMES)

“Lessons learned”:

• There were large differences in cloud top radiative cooling even 
for similar cloud profiles  impact of RT schemes (use simple 
formula for RT calculations following BLCWG?)

• More complete set of diagnostics for boundary layer/turbulence 
(buoyancy fluxes, vertical velocity variance, entrainment, etc.)

• Impact of spinup (initialize with liquid, but allow dynamics to 
fully spin up before introducing ice)



Some key questions:

• Given the importance of cloud-radiative-cloud dynamics 
feedback, what is the impact of horizontal and vertical grid 
spacing?

• What is the role of large-scale forcing? Can variations in large-
scale forcing produce similar sensitivity (i.e., rapid collapse of the 
cloud layer) as changes in ice number concentration?

• How important are the cloud-radiative-dynamical feedbacks for 
cases with stronger surface forcing (e.g., MPACE)?
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