The challenge of adequately representing
deep convective dynamics, bulk microphysics,
and their interaction in CRM and LAM
simulations



What are we after?

e |f we want to know advection to stratiform
and anvil regions, then we really want to know
convective updraft and downdraft properties

e How do we know if they are properly
represented in models?

— Observations and Retrievals
— Intercomparison
— LES and bin schemes as closer to “truth”



What are the updraft properties?

* For deep updrafts
(start in PBL and end

near tropopause),
models have stronger
w and higher dBZ
than dual Doppler
retrievals
e Dynamics?
 Microphysics?
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The driver of convection
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Buovyancy in updraft cores
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Height [km]

B + PGF
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Entrainment — the biggest unknown

e How can we know if this is being represented
properly?
— Turbulent = No nice equations

— But it is a mixing process — can look at conserved
variables such as moist static energy



Height [km]

Entrainment
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Rain Rate
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Updraft Microphysics

Rain Rate vs. Size
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Interaction of Dynamics and
Microphysics

Too much cloud and
rain water

Entrainment is too small

Water loading slows the
updraft but not enough for
most water to fall out

Rain freezes producing a
lot of graupel

Latent heat release Graupel with fall speeds
reinvigorates the far less than the updraft
updraft is lofted very high

Large regions of high radar
reflectivity and convective
area

Graupel is advected over
large region




Example Vertical Cross-sections
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What can we do?

1 km resolution appears too coarse for tropical convection
with conventional turbulence representation

ldentify bulk microphysics assumptions that significantly
improve results without significantly increasing computing

Understand how dynamical and microphysical terms are
interacting in drafts

— Variables we can measure to get buoyancy and entrainment in
different situations (thermal size and large-scale environment)?

— There is a lot more that can be done with LES to improve CRMs
Advection to stratiform and anvil regions = deep convective
draft properties

— Correlate stratiform properties to deep convective properties
through intercomparison

Collaboration of people across many specialties
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