A Modeling Perspective on Absorption

Jerome Fast

- Absorption is a **key parameter** that contributes to aerosol direct and semi-direct effects.

- Aerosol optical parameters can be **computed in several ways**, and we need to know which is the most **appropriate method** for climate model predictions.

- Therefore, modelers need to have a **high confidence in the absorption measurements** used for model evaluation.
Model Treatments of Optical Properties

Current Assumptions in CAM

- Internal mixtures for computation of optical properties for 3-mode aerosol; some external mixing for 4 and 7 mode aerosols
- No BC absorption in water droplets

Treatments in Being Tested CAM

- Separate organic aerosol species (anthropogenic, biogenic, biomass burning)
- Brown carbon absorption for primary emissions of biomass burning
- Speciation of dust – primarily for ice nucleation, but could also account for variable refractive indices for dust

Other 0-D and regional-scale models often have more complex treatments, but they are also computationally more demanding

<table>
<thead>
<tr>
<th>size and number distribution, composition (with aerosol water)</th>
<th>refractive indices</th>
<th>Mie theory</th>
<th>scattering absorption</th>
<th>single scattering albedo, ω</th>
<th>layer optical depth, $\tau\lambda$</th>
<th>radiation calculations</th>
</tr>
</thead>
</table>

τ_{λ} evaluated most often
Challenges in Simulating SSA

- **SSA**$_{870\text{nm}}$ \((\omega_0) = \frac{k_s}{(k_a + k_s)} \)
 - need accurate measurements of \(k_s \) and \(k_a \)

- **observed** full WRF-Chem simulation

- **from Barnard et al. ACP (2010)**

 - **Observed**
 - 12 UTC March 20
 - Dust 57%
 - OM 19%
 - BC 4.5%

 - **Simulated**
 - 14.8 µg m$^{-3}$
 - Dust 70%
 - OM 14%
 - BC 3.4%

- aerosol optical properties driven by data (volume-averaging and shell-core similar)

- Primary reason for error in simulated SSA is prediction of particulate composition (especially BC), rather than assumptions in aerosol optical properties

- This study did not evaluate optical properties at lower wavelengths, since a lack of dust and organic data (size, composition) would be an issue for absorption
Refractive indices employed by models are a function of composition and obtained from laboratory studies.

“Black Carbon”
- Range of values reported in the literature, for example *Bond and Bergstrom (2006)* report 1.75 – 1.95 for real part and 0.63 – 0.79 for complex part at 550 nm

Organics:
- In the past, one refractive index usually used, but ...
- Models are now speciating organics (POA, SOA, biogenic, biomass burning) so it is possible to account for different types of organics
- “Brown carbon” is an obvious example, but data is limited – mostly to biomass burning

Dust:
- An important absorber for λ less than about 500 nm
- Range of values reported in the literature, dependent upon composition but speciated dust source datasets just now being developed
Aerosol Morphology

Mixing rules applied to account (crudely) for morphology

- **External Mixing**: assume single composition for each particle
- **Volume Averaging**: averaging of refractive indices based on composition
- **Shell-Core**: BC core and average of other compositions in shell; *Ackermann and Toon* (1983), *Bohren and Huffman* (1983)
- **Maxwell-Garnett**: small spherical BC cores randomly distributed in particle; *Bohren and Huffman* (1983)
- BC forcing for internal mixing > for external mixing

What about effect of water uptake and aerosols in clouds (both cloud-borne and interstitial aerosols)?
Model Evaluation: Measurements

- **Black Carbon**: SP2 a critical instrument
- **Organics**: Need speciated organic information which is possible to derive from AMS data
- **Coarse Mode**: Need size distribution of composition $> 1 \, \mu m$ ([Kassianov et al., GRL, 2012](#))
- **Mixing State**: Now have instruments (e.g. SPLAT) and lab analysis techniques to provide this information

Absorption:
- PSAP (traditional)
- Photoacoustic systems
- AERONET AOD_{abs}, (derived)
- Models need to be evaluated more frequently at more than one wavelength

Cappa et al., Science, (2012) found little enhancement in absorption with aging in contrast with model representation, but this result is only for low RH

Calculate [CalNex](#) Estimated Photochemical Age (hours)

Similar results for CARES

- [CalNex](#) Estimated Photochemical Age (hours)

Data (noisy)

Calculated
Model Evaluation: Profiles

Common Type of Evaluation

Averaged Terra-MISR AOD
January 2006

Niamey

Simulated AOD
MOSAIC + GOCART dust

Uncommon Type of Evaluation

various simulations

2 * biomass burning

dashed = dust only

derived from ARM mobile facility data

We have vertical profiles of a range of aerosol parameters from aircraft and remote sensing (e.g. Lidar) platforms, but ...

Coincident measurements of BC (and other absorbing aerosols) and absorption profiles are more limited

from Zhao et al., ACP, 2010
necessary, but not sufficient type of evaluation
Are there enough measurements to verify simulated absorption?

- Are measurements at long-term ARM sites (SGP, TWP, NSA) sufficient?
- Are measurements from multiple platforms (e.g. aircraft, mobile facilities) during ARM IOPs sufficient?

Use TCAP Closure Studies to Examine Uncertainties in Absorption Profiles

- HSRL-2 obtained extinction profiles, profiles of aerosol composition, scattering, and absorption from G-1
- Evaluate single-column CAM (constrained) and unconstrained 3-D CAM simulations
- Test model treatments of aerosol optical properties