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Previous studies have shown strong sensitivity of
aerosol effects on deep convection to environmental
RH and vertical wind shear (Fan et al. 2009; Khain
2009).

- “Increasing aerosols always suppresses convection
under strong wind shear and invigorates convection

under weak wind shear...” (Fan et al. 2009, JGR)

Dynamically, what might explain sensitivity of aerosol
eftects to vertical wind shear?



Shear exerts a dominant influence on storm type:

Single cell Multicell Supercell
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Environmental wind shear has two key effects on the
vertical velocity of updrafts:

1) Impact via cold pool-shear interactions leading to less/more
tilting of updrafts
=> more sensitive to aerosols

2) Generation of dynamic pressure perturbations, p,
=> less sensitive to aerosols
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* Aerosols effects via microphysics can potentially
affect cold pools and buoyancy.

* Updrafts of systems strongly driven by dynamic
pressure perturbations (e.g., supercells) should in
principle be less sensitive to aerosols.



This is seen in recent supercell simulations (Storer et al. 2010;
Lebo et al. 2012; Morrison 2012).
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Other studies have shown larger effects (Khain and Lynn
2009; Lebo and Seinfeld 2011), but it is unclear if this is
associated with supercellular or secondary convection.



* Aecrosol effects are expected to be stronger in more cold
pool/buoyancy dominated systems with relatively smaller p,,.
Shear is still very important because of impacts on updraft

tilting!

A widely-cited conceptual model of the dynamics of these
systems is “RKW?” theory (Rotunno et al. 1988).
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Squall Line Simulations
(Lebo and Morrison 2013)

Loosely based off of 8" WMO Cloud Modeling
Workshop Case 2 [Muhibauer et al., 2013 (BAMS, in press)]

N-cn = 100, 200, 500, 1000, 2000 cm™3
Au=8,12, 16, 20, 24, 28, 32 m s™! over 5 km
Morrison et al. (2009, MWR) bulk microphysics

as modified in Lebo et al. (2012, ACP) including
explicit treatment of supersaturation and binned

aerosols.
Forced w to initiate convection (applied first 1 h).

8 hr simulations




Cold Pool Sensitivity: weak shear case

rain evaporation
rate in the lowest Skm
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“Clean” = 100 cm™

“Polluted” = 1000 cm?3 Temporal averages betweeg 5-7 hours and zonal
average 100 km behind gust front
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Cold Pool Sensitivity
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Convective structure

“Clean” = 100 cm™3
“Polluted” = 1000 ci
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Convective invigoration

Increase in updraft
mass flux
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“Clean” = 100 cm?3
—————— “Polluted” = 1000 cm™



Under stronger shear, when C/AU ~ 1 or <1, the

opposite occurs: C is weaker in polluted conditions
and the updrafts become more tilted in the
“forward” (downshear) direction and weaken.



Summary of results
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Aerosol Number Concentration [cm™]
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For weaker shear (region I), and the decrease in C in
polluted conditions leads to upright updrafts and precip

and convective mass flux.

For stronger shear (regions II/I1I), , and the
decrease in C in polluted conditions generally leads to tilted
updrafts and precip and convective mass flux.



Conclusions

* Studies have shown strong case dependence of aerosol effects on
deep convection, especially in term environmental wind shear and
RH. This is broadly consistent with the fact that mechanisms driving
vertical velocity vary widely in different storm types/environments.

* Effects appear to be weaker in systems with strong forcing by
tilting/stretching of environmental shear (supercells), but larger in
systems driven by cold pool-shear interactions (multicells/squall
lines).

* Aerosol effects on the dynamics of a squall line are consistent with
RKW theory, providing a conceptual framework for aerosol etfects
on these systems.



