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Aerosol Populations in Current Models

Smoke (OC/BC)

Sulfate

External mixture of different aerosol types



Real Particles in the Atmosphere
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How much detail is needed to capture aerosol impacts in large scale models?



How important are these details?

Key question 1: Key question 2:

What is the impact of How should we include

mixing state on CCN, IN, mixing state information

optical properties? in models that quantify
aerosol climate impacts?

= What aerosol mixing states exist in different environments?

= How can we connect measurements (lab and field) to each
other and to modeled mixing state information?

= What mixing state information should be measured in the
field and in the lab?



Two Definitions of “Mixing State”

Population mixing state:

Distribution of chemical
compounds across the
particle population.

Morphological mixing state:

Distribution of chemical
compounds within and on the
surface of each particle.
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Comparison of Mixing State of Cloud Droplet ~7

Pacific Northwest
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Zelenyuk at al. (2015). Airborne Single Particle Mass Spectrometers (SPLAT Il & miniSPLAT) and New Software for Data
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Mixing State of Aerosol Characterized during
TCAP Field Campaign
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Particle size and compositions change
with time, altitude and location.

Measured particle size and mixing state
used for aerosol CCN closure and
aerosol optical properties closure
(using 4STAR (Segal-Rosenheimer et
al. (2014) JGR), and HSRL-2 (Berg et
al.; Chand et al.)).

Slide courtesy of Alla Zelenyuk
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Size-dependent composition mixing state and particle

hyg roscopicity Atkinson, Radney, Lum, Kolesar, Cziczo,
Pekour, Zhang, Setyan, Zelenyuk and Cappa

« Measurements of f(RH) from CARES were used to determine hygroscopic growth
factors for submicron oxygenated organic aerosol and supermicron particles at the
T0 and T1 sites

* Influence of particle mixing state (internal vs. external and size-dependent vs. size-

independent composition) was assessed.
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BC absorption enhancement high in Detling (Clearflo) and
low in Sacramento (CARES): Mixing State Effect
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Morphological effects on BC optical properties

S. China, B. Scarnato, C. Mazzoleni et al.
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See poster 32, session 1: Mazzoleni et al.




Carbonaceous Mixing State via X-Ray Microscopy
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« Mixing state parameterization of imaged atmospheric particles
« Particle size, composition, and location of inclusions
« Cares 2010: evidence of local emissions (T0) and organic

condensation (T1)



Change in SP2 Scattering Signal with Plume Age
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BC3: Systematic experiments
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particle morphology.
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Fragmentation pattern suggests increase in thickly-coated rBC-containing particles with time




Soot Aerosol Aging Study (SAAS)

How do soot mixing state and morphology evolve due to condensation and
coagulation with SOA and how this aging effects optical properties, CCN, and IN?
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R.A. Zaveri, J.E. Shilling, M. Pekour, G. Kulkarni, D. Chand, J. Wilson, A. Zelenyuk-Imre, A. Laskin, S. Liu, A. Aiken, M. Dubey,
R. Subramanian, N. Sharma, S. China, C. Mazzoleni, A. Sedlacek, T.B. Onasch, R. Sellon, M.K. Gilles, and R. Moffet




Development of a consistent
model hierarchy
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WRF-PartMC-MOSAIC. Particle-resolved physics and chemistry coupled with 3D dynamics
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Processes: coagulation, gas chemistry, aerosol-gas interactions, advection and diffusion.
Computation: 40 x 30 x 60 domain, 10,000 particles per grid cell (250 million total).

Runtime: 12 wall hours on 60 cores to simulate 2 model hours.




Black Carbon Mixing State Modeling 7

Pacific Northwest

J. Ching. R. Zaveri, R. Easter, N. Riemer, J. Fast + Submitted soon to J. Geophys Res. NATIONAL LABORATORY
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lce Nucleation?

Breakout session on Thursday 8:00-10:00AM

How Does Mixing state Impact Ice Nucleation?

Air mass consisting of internally
mixed brown and green particles:

6000m  EHT-100KY  Extracior= 167554

= 1ym EHT=100%
—— wp=33 ——— WD=108m

Poschl et al., Science, 2010

Knopf et al., GRL, 2010 Laskin et al., JGR, 2012 Knopf et al., JGR, 2014

Slide courtesy of Daniel Knopf




Progress and Outcomes

Cross-cutting collaborations between key areas,
enabled by having a focus group.

Unified conceptual framework for quantifying aerosol
population mixing state based on per-particle species
mass fractions and diversity metrics.

On our way to developing a consistent model hierarchy.

Controlled chamber experiments on aerosol mixing state
evolution.



Current Priorities and Opportunities

Confronting particle morphology:
* Metrics for morphology
* Process-level understanding of how particle morphology
evolves
Quantitative population mixing state information from
experimental data, using per-particle species mass
fractions.

Information on population mixing state of emissions is
bottleneck for modeling.

Population mixing state inter-comparison studies
between global, regional, and particle-resolved
aerosol models.



