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Importance of warm rain observations

* Direct impact on the maintenance of parent clouds
* Impact on Earth's radiation budget and water cycle

* One of the key variables to constrain cloud-aerosol-
precipitation interactions in climate models
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Known issues about precipitation in models

Stephens et al. (2010)

* Too frequent by a factor of 1.5 -2 Ahlgrimm and Forbes (2014)

* Too light by a factor of ~2 in general, but too heavy in
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Two (entwined) problems -
representation of clouds and representation of
precipitation

Many studies try to tackle the problem of clouds or
clouds and precipitation

‘ Isolate rain formation processes
from cloud issues
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Ship-based observations from MAGIC in 2013

* Ensemble Cloud Retrieval (ENCORE; Fielding et al., 2014; 2015):

— Combine cloud radar, lidar and shortwave zenith radiances

— Use the Iterative Ensemble Kalman Filter as an optimal estimation
framework
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Cloud/drizzle statistics from MAGIC % Reading

LWPc Median: 97.1204 Median: 60.678
LWPd Median: 5.9488
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Schemes for warm rain formation

* Either diagnostic or prognostic

1 Autoconversion term

cloud layer +
Accretion term

3

Sedimentation term
(fall speed, rain drop size distribution)
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Time to reach steady state

I vy vy
autoconversion at accretion at sed

* Use all observed cloud
profiles

* steady state: less
than a 1% change in
the cloud base rain
rate

time to steady state (min)

* 95% of time periods

Ih  shorter than 40 min
cloud base rain rate (mm day'l)
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Case selection

Cloud fraction greater than 0.5

Cloud water path variability (standard deviation/mean) less
than 0.5

Rain water path variability less than 1.0

About fifteen 40-min long data (retrieval available at 5-sec
resol.)
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Coefficient optimization for
autoconversion and accretion

Vil = Viiaq,00 =€ qgk Nc[; ‘Az + G, '(qc,k 'qr,k)
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sedimentation autoconversion accretion

* Give a set of coefficients (C,;, a, b, C,, ¢)

* Minimize difference between the left and right hand sides
using observations
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Optimized coefficients

autoconversion

C1°qg'N5

Solution 1270+ 86§ 2.83+£0.16| —-1.17+0.14

1350 2.47 -1.79

Solution 2 | 1270+ 88 | 2.68 + 0.18 | —1.67 £ 0.17
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accretion

C2 (qc . qr )C

C, C

63 £8 |1.11+0.01

50 £+9 |1.11+0.01
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The prognostic equation for warm rain

99, _ advection + (aq” ) + ( ) + ( %, )
at at autoconversion accretion at sed

horizontal gradient of rain properties
is missing in current observations |l

v
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Summary

New observations of in-cloud rain water content allow us to
better understand process rates of warm rain formation.

Observations suggest that autoconversion models may be too
sensitive to cloud droplet number concentration, but two
possible optimal coefficients remain.

Measurements of rain horizontal gradient will be invaluable
to help constrain the autoconversion rate.
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