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Case	study:	2009-11-22

2

MODIS	image	from	
AQUA	overpasses

Storm	influence	
from	reanalysis
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Motivation
1. Found	no	“easy”	constraint	of	

LES	drizzle	formation	owing	to	
large	spread	in	observed	
variables	over	very	wide	range	
of	(all?)	spatiotemporal	scales
– Drizzle	strongly	dependent	on	

LWP	(among	other	parameters)
– No	clear	approach	to	reproduce	

observed	frequencies	(of	LWP	
or	other	parameters)	in	LES

– No	clear	approach	(yet	in	hand)	
to	robustly	evaluate	single	LES	
case	study	with	observations	
variably	sampled	over	wide	and	
multivariate	parameter	space
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Time	series	from	ground	instruments
(MWR,	MFRSR,	TSI)
Black	symbols	from	VISST	(courtesy	
of	Kirk	Ayers	/	NASA	Langley)



Motivation

2. Found	motivation	to	work	harder	
owing	to	large	differences	in	the	
number	of	drops	produced	by	two	
LES	for	a	given	CCN	[due	to	
differences	in	vertical	velocity	
variance	for	same	cloud-top	
entrainment!]
– Drizzle	strongly	dependent	on	the	

number	of	drops
– Updated	SAM	dynamics	agree	

closely	with	DHARMA,	but	
observational	verification	required

– No	clear	approach	yet	in	hand	to	
well	constrain	the	LES	vertical	
velocity	variance
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Motivation
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Differences	in	the	dynamics
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Two	LES	models	with	bin	microphysics

• idealized	initial	sounding	(11Z),	fixed	subsidence	profile	and	SST,	periodic	
boundaries,	fixed/similarity	surface	fluxes,	nudged	horizontal	winds,	
diagnostic	ammonium	bisulfate	aerosol	PSD	[Clarke	et	al.	1974]

DHARMA SAMEX

finite-difference	dynamics scheme	
[Stevens	et	al.	2002]

finite-difference dynamics	scheme
[Khairoutdinov and	Kogan 2003]

dynamic Smagorinsky sub-grid	scale	scheme	
[Kirkpatrick	et	al.	2006]

prognostic TKE	sub-grid	scale	scheme	
[Deardorff 1980]

one-moment	bin	scheme one-moment bin	scheme

piecewise	parabolic	diffusional	growth	scheme	
[Colella and	Woodward	1984]

semi-Lagrangian diffusional growth	scheme	
[Kogan 1991]

3rd-order	advection	scheme 2nd-order advection	scheme

implicit	collision-coalescence conserves	N	and	M	
[Jacobson	et	al.	1994]

explicit	scheme	of	Berry	and	Reinhardt	[1974]

Hall [1980]	or	Böhm [1999]	collision kernel Hall	[1980]	collision	kernel

Beard	and	Ochs	[1984,	1995]	or	
coalescence	efficiency	=	1

coalescence	efficiency =	1
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Approach

• Observed	drizzle	moments	and	spectral	properties	exhibit	
robust	relationships:	do	LES	reproduce	these?

à Use	the	McGill	radar	Doppler	spectra	simulator	to	emulate	
radar	spectra	and	moments	from	results	of	both	LES	models
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Z–MDV	relationship
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Wiggles



Z,	MDV,	W	near	CT
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Z–MDV	relationship

Wiggles	in	Z-MDV	space	appear	to	be	caused	by	limitations	in	
LES	representation	of	cloud-top	dynamics:	strong	LES	downdrafts	
near	cloud	top	are	not	observed,	presumably	owing	to	
limitations	of	LES	dynamics	here
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Z–Skewness	relationship

Most	pronounced:	
excessively	negative	spectral	
skewness	in	LES	everywhere	
(DHARMA)	or	below	cloud	
base	(SAMEX)
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Further	look

• Forward	simulations	from	a	1D	model	and	in	situ	observations	
are	consistent	with	a	sharp	decrease	in	N(D)	at	largest	D	more	
closer	to	SAMEX

• Motivation	for	follow-on	study	with	DHARMA	and	McGill	in	
1D	framework	(DSDs	realistic	enough)
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Ultimate	goals

• Improve	ability	of	LES	with	bin	microphysics	to	
faithfully	represent	radar	observables	without	
sacrifice	to	performance	(analogous	to	three-
moment	CRM	schemes)

• Use	radar	observables	to	do	the	“hard”	constraint	of	
LES	drizzle	formation
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Approach

• Observed	drizzle	moments	and	spectral	properties	exhibit	
robust	relationships:	do	LES	reproduce	these?
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DHARMA	– 260cc
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DHARMA	– 130cc
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DHARMA	– 130cc	– 60	bins
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DHARMA	– 65cc	– 60	bins
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SAMEX	– 260cc
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SAMEX	– 130cc
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