Handling particle complexity for simulation of
aerosol indirect effects in large scale models

Objective: Efficient aerosol simulation using quadrature-based approaches
Lead personnel: Laura Fierce (lead), Bob McGraw
Funding status: funded under UCAR Visiting Scientist & BNL SFA programs

Challenges: Moving beyond box model to integrate quadrature-based model into
WRF-Chem for comparison with other schemes evaluation against observations

Planned collaborations: Nicole Riemer and Matt West for benchmarking; Susanne
Bauer, Philip Stier, etc. for applying new techniques to advance modal models;
and Jerome Fast, etc. for evaluation using the Aerosol Modeling Testbed

Summary of progress: Demonstrated that sparse quadratures in bivariate
coordinates accurately and efficiently describe the CCN spectrum of complex
aerosol mixing states for use in models.



Particle-resolved model reveals wide variation in size and k,
leading to variation in CCN activation as a function of s.
Can we represent this variability with quadrature-based models?
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If 7 bivariate moment constraints are known, large uncertainty
in in CCN fraction as function of supersaturation

for given bivariate constraints:

>, = [ [n(D,,,%)¢,(D,,,k)dD,_dxk,

S —00 —00
5 infinite distributions having u, set,
2 -. |large spanin N_.(s)/ N
& g
< =
g, 1e-06 &
) =
b= ) 1
g 2
£ =
% =z
=) ~
=
80 505}
z S v

Z

le-07
0
10 100 1000 0.01 0.1 1 10

dry diameter [nm] supersaturation [%]



Construct quadrature from bivariate constraints

quadrature approximation
of bivariate constraints:
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representatlve particles {D
and associated weights w,
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Compute critical supersaturation s_; for each sparse particle
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use x-Kohler to transform
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Approximately reconstruct number distribution n(s_) from
projected quadrature points s_; and weights w;,
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Compute s_; moments
from quadrature points:

W, = §w1¢n (Sc,i )
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Reconstruct n(s_) as
constrained maximum

entropy distribution.
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Quadrature-based reconstruction reproduces CCN spectrum
from PartMC-MOSAIC using only 7 sparse particles
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Overview of new approach for quadrature-based models

1. simulate few 2. project into relevant
sparse particles variable space, e.g. s_;
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3. reconstruct number
distribution, e.g. n(s_)

weight



