

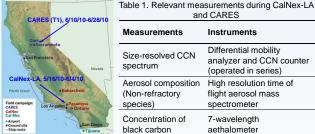
Cloud activation properties of organic aerosols observed during CalNex-LA and CARES

Fan Mei¹, Patrick Hayes^{2,3}, Amber Ortega^{2,3}, Jose-Luis Jimenez^{2,3}, Ari Setyan⁴, Qi Zhang⁴, Jonathan Taylor⁵, James Allan⁵, and Jian Wang¹

1. Brookhaven National Lab, NY. 2. Cooperative Institute for Research in Environmental Sciences, CO. 3. University of Colorado, CO. 4. University of California, Davis, CA. 5. The University of Manchester, UK.

Introduction & Motivation

- > Organic species are major components of atmospheric aerosol. Ambient aerosols often consist of hundreds of organic species, and their hygroscopicities (κ_{Om}) are not well understood.
- > This incomplete understanding of κ_{Org} may lead to substantial uncertainty in simulated aerosol indirect effects (Liu and Wang, ERL, 2010).

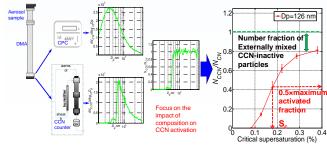

Objectives

Characterize the cloud activation properties of atmospheric organic aerosol.

> Examine the relationship between κ_{Org} and oxidation level of organics.

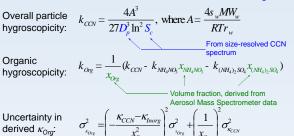
Examine the impact of organics on droplet growth kinetics.

Measurements


and CARES	
Measurements	Instruments
Size-resolved CCN spectrum	Differential mobility analyzer and CCN counter (operated in series)
Aerosol composition (Non-refractory species)	High resolution time of flight aerosol mass spectrometer
Concentration of black carbon	7-wavelength aethalometer

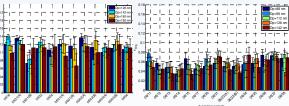
and CARES

Sampling location and period


Experimental setup

Measurements of size-resolved CCN spectrum

Data Analysis

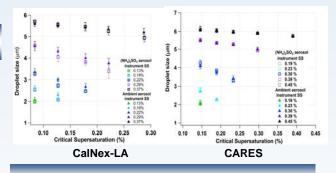

> Derivation of hygroscopicity of organics (κ_{Org})

Results

>Derived organic hygroscopicity during the two studies

Both size-resolved CCN spectrum and chemical composition are averaged over periods of ~2 hours to increase counting statistics and signal to noise ratio. The following figure shows derived organic hygroscopicity during the averaging periods.

CalNex-LA: κ_{Om}=0.11±0.02


CARES: K_{Org}=0.05±0.02

> The relationship between κ_{Org} and the oxidation level of organics 1. Organic hygroscopicity

- Smog chamber data: A g-pinene II isoprene A TM Field data: 0.20 CARES 0.16 1.50 P 0.12 1.40 1.30 0.08 1.20 0.00 1.07 0.0 0.1 0.2 0.3 0.4 0.7 0.8 O:C atomic ratio
- generally increases with increasing the oxidation level (i.e., atomic O:C ratio).
- However, the large scatter in the data suggests that it may be difficult to develop a univocal parameterization of κ_{Ora} based solely on the oxidation level.

Results

- > Impact of ambient organics on droplet growth kinetics
- 1. Film forming organic compounds may delay droplet growth by acting as a barrier for water condensation on particle surface (i.e., reduction of water accommodation coefficient).
- 2. During CalNex-LA and CARES, when exposed to the same supersaturation inside CCN counter, organic particles grew to the same droplet size as pure $(NH_4)_2SO_4$ particles with identical critical supersaturation, suggesting no influences of organic species on water accommodation coefficient.

Conclusions

- The derived organic hygroscopicity for CCN activation are κ_{Om} = 0.11±0.02 during CalNex-LA and κ_{Org} = 0.05±0.02 during CARES, consistent with previous smog chamber studies.
- $\succ \kappa_{Ora}$ generally increases with increasing oxidation level. However, the large scatter in the data suggests that it may be difficult to develop a univocal parameterization of κ_{0m} based solely on the oxidation level.
- > Ambient organics observed during CalNex-LA and CARES do not inhibit droplet growth through reducing water accommodation coefficient at particle surfaces.

Acknowledgements

- >Atmospheric System research program
- ≻ARM climate research facility
- ≻NOAA. CEC and Caltech
- Supporting from staff in BNL

