ENERGY FLOWS IN EARTH’S CLIMATE SYSTEM
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CLOUD FRACTION

Cloud fraction 1s widely used in interpretation of
cloud effects on radiation, iIn measurement and
models. However as cloud fraction depends on
threshold and resolution, different measurement
techniques yield very different values.
Nonetheless models continue to use this quantity
and model evaluations are based on comparison
with observations. The inability to define a cloud
limits the ability to determine cloud radiative
effects on short- and longwave 1rradiance.

IMPORTANCE TOP OF ATMOSPHERE

Net Radiative Flux Anomaly
Aqua (95% confidence interval) slope = 0.02 + 0.50 Wm™ dec

Terra (95% confidence interval) slope =0.18 + 0.33 Wm™ dec’

H Global mean from CERES

Accurate knowledge of energy flows in Earth’s
climate system 1s essential to evaluation of
representations of these flows 1n models of
climate and climate change.
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This poster presents key results from our recent
survey of energy flows between the surface and
the atmosphere and between the atmosphere and
space and points out key remaining uncertainties.
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Average planetary radiative imbalance is near constant.
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Adapted from Tredger (2009) and IPCC AR4 Figure 9.5. e = A = d . .

1 K error in temperature corresponds to error in emitted Ocean heat content anomaly R Ha i,
longwave radiation at surface of 3.4 W m-2, | ) "

Contrast is increased in successive frames.
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Cloud Shortwave Radiative Effect

Aqua (95% confidence interval) slope =-0.50 £ 0.33 Wm™ dec’

N e L N | Terra (95% confidence interval) slope = 0.10+ 0.29 Wm™ dec’
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Surface emitted longwave flux 1s commonly

Ocean heat content anomaly, 1022 J
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substantial errors in calculated longwave fluxes.

indicated by many climate model calculations.

Difference in trends: real or artifact?
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