

Background: The second ARM Mobile Facility was created with the intent to include deployments. The year-long MAGIC campaign – beginning in October 2012 – is the first ship-board deployment of the AMF. Among the many challenges associated with this field campaign is determining the impact of the ship's motion on the ship are the Ka-band ARM Zenith Radar (KAZR) and the Marine W-band ARM Cloud Radar (MWACR). Development of two post-processing VAPs – 'kazrshipcor1' VAP and the 'mwacrshipcor1' VAP – is necessary to provide adjustments for the movement of the ocean-going vessel. This poster presents the scientific basis and algorithm designed to create the proper alignment corrections required for the specific radar. Second versions of these VAP (kazrshipcor2) will have a more robust horizontal wind input that may involve interpolated ship-launched radiosonde measurements, wind profiler, and other sources of wind information.

Characteristics of Ship-Board KAZR and MWACR Instruments During the MAGIC AMF Deployment

	Ka-band ARM Zenith Radar (KAZR)	Marine W-band ARM Clo (MWACR)	
Platform	Unstabilized	Stabilized	
Vertical Beam	Typically Off-Zenith	Zenith Pointing	
Observed Mean Doppler Velocities	Not Vertical Velocities	Vertical	
Radar Range Coordinates	Differ from Earth-Based Vertical Height above Radar	Identical to Earth-Based Height above Rada	
Ship Motion Variables (from SeaNAV files)	Pitch, Roll, Yaw, Heave, Heave Velocity	Heave, Heave Veloc	
Horizontal Winds (TBD) U-Wind, V-Wind		None	
Output Files	kazrshipcor1	mwarcshipcor1	

Transformation Equations

Conversion of unstablized vertical velocity (v_3^s) to Earth-based velocity (v_3) is done using equation (1): (1) $v_3 = \{v_3^s + [\cos(\phi)\sin(\theta)\cos(\psi) + \sin(\phi)\sin(\psi)]v_1 + [\cos(\phi)\sin(\theta)\sin(\psi) - \sin(\phi)\cos(\psi)]v_2\} / [\cos(\phi)\cos(\theta)]$ where, v1 and v2 are the horizontal wind components and ψ , ϕ , θ are the yaw, roll, and pitch angles, respectively. If the horizontal winds are ignored (as they are difficult to determine), equation (1) becomes (2) $v_3 = v_3^{s} / [\cos(\phi) \cos(\theta)]$

While (2) is more simple, it is not sufficient to capture the complete transformation (see Table 2).

Transformation Equations (Cont.)

Both the stabilized instrument (MWACR) and unstablized instrument (KAZR) require an adjustment to velocity related to the relative motion of the ship. To make this adjustment, heave_velocity is added to the adjusted mean doppler velocity.

(3) w3 = heave_velocity $+v_3$

Note: If the stabilized platform of the MWACR fails, the change from ship coordinates to Earth-based coordinates is accomplished by applying equation (1).

Heave Velocity Adjustment By Radar Range at 18:53 on 10/01/2012

Heave Adj. MDV Radar Gates 50

MDV Differences At Gate 50

3000	 Org. MDV Adj.MDV (1)] (2
2800	-Adj.MDV(1)+Heave		L		
2600			_t		
2600 2400 2200				***	
2200					
2000		1 1		0	
1800				2	4

Heave Adjusted MDV Radar Gates 1-30

Effects of a Ship's Motion on the Measurements of Vertically Pointing Radars: The Scientific

5.4	T • T
1.1	0.2
1.1	0.3
9.3	5.3
6.1	9.4

)V)	v3 (MDV)	v3 (MDV)
1	v-rad	v-rad
S	4 m/s	8 m/s
5	4.0229	8.0459
8	4.0235	8.0470
0	4.0060	8.0120
3	4.0066	8.0132
2	4.0117	8.0346
7	3.7544	7.7780
1	4.1331	8.1391
6	3.8759	7.8825