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ACl Dependence on Meteorology Aerosol and Cloud Relationship in Accordance with Stability
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00 002 004 006 008 00 002 004 o006 008 Fig 3. (Left panel) Level-averaged vertical profiles of potential temperature (0) and relative humidity (RH)
N Ny at PTR (red color) and SGP (blue color) with the standard deviation as shading. (Middle Panel) Schematic diagram of
Fig. 1. Relationships of relative variability (RV) and dispersion (D) with aerosol-cloud interactions in accordance with the stability condition above the clouds. (Right panel) Relationship of
the static stability (N»g) for PTR (red) and SGP (blue) together. cloud drop effective radius (r.) with aerosol light scattering coefficient (c,,) of PTR (left) and SGP (right).
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Fig. 2. Histograms of normalized LWP (Nywe) of PTR (red) and each other and interdependence due to their complexity more dominant and clearly discernible in less-variable

SGP (blue) with the whisker denoting its standard deviation. and measurement artefacts. stratocumulus clouds, since masking effect is minimized.



