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Arctic Mixed-Phase Stratocumulus
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Motivation

Observations indicate that the processes that maintain sul:tmpial and Arctic stratocumulus
{50 diFFer, due to the different environments in which t]-lcy oceur. For example, specific
huml’dn’tg inversions (spedﬁc humidﬂy incn-zsingwfth l'vc@'d:) are \Crequently observed to occur
coincident with tem inversions in the Arctic (eg, Curry et al. 1996, Tjernstrém et al.
2004, Sedlar and chrnm-b‘m 2009). In a recent sm&y, Sedlar et al. 2om) surveyed data from
SHEBA, ASCOS and at Barrow, Alaska, to find that sPcciﬁc I’lumid?ty inversions occurred
75-80% of the time when low-level dlouds were present. In addition, this stucly found a
significant re|ationship between the existerice of speciﬂ'c l’vumiclity inversions and Arctic Mixed-
Pﬁnase Stratocumulus (AMPS) that extended into the tempem’tum inversion, hignﬁj'vﬁng the
difference between AMPS and subtropical stratocumulus where the entrainment of dry air
aloft prevents doud liquid water from ing in the temperature inversion. Other important
differences between warm Sc and AMPS are more tive cloud top radiative caoling
because of the cold, dry ovcrlyins Arctic free troPosPhcre, and the vapor diffusion onto ice
(Dergamn pmocss) which acts as a Potenﬁa“y Iarge sink of water vapor for AMPS even when
there is limited [iquic‘ water, fn warm Sc drizzle lag collision-coalescence ofdroplets, soas
[iquid water in warm Sc decr\‘as&s, drizzle will shut off.

In this st’udy we focus on a dccouplcd AMPS in order to focus on the conditions that make
AMPS distinct from sul ical Sc. SPcciFically, we use nested LES simulations to quanhfy the
role of I‘lumidﬁy inversions at cloud topin the persistence of AMPS.

Structure of Stratocumulus ToPPcd Boundaly Lagers
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A) Measured 17.62 April 8 2008 at (13INI56.6W).
B) 50 m LES simulation 20Z April 82008 at (13N,
156.9M). The dashed lines mark the height of the
cloud liquid water maximum,

A in units of K. 55) Horizontal winds, in
units of 5%, ) Equivalent potential temperature, in
units of K. D) Spocific humidity, in units of gke'.

The lmPact of a Humiditg Inversion on the Persistence of a Decouplecl
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Experiment Design

<WRF Version 3.1

< Two-way nesting using 25km, 5km, tkm,
200m, 50m nests

%16m vertical resolution in mixed layer, 8m
ution in entrainment zone

<Morrison 2-moment |iquid andice
microphysics

< Uniform sea-ice surface
S BECMWF§ hcur‘yforcing at the 25km
lateral boundaries

<Aerosols fit to ISDAC measurements

Boundany Lager. Sh—uctureAlong Mean Mixed Lager Winds

Vertical structure at 202 a]ong mean
doud Iagcr wind from 50 m nest.

A) Cloud water, in units mr'gkg\

B} Cloud ice, in units of kg"

©) Subgrid W, in units o(scm 5.

D) Vertical velocity, in units of ms.
E)Ex jui lent potenti ire,
in units of K. Red(blue) Jines are
contours of g = 0.2(0.0) g m? to
ic'enﬁfy the max(min) of the cloud

%wabcr, inunits of gkg.

Isotherms are shown with colored
contour lines in all ﬁgjrcs except
®.
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A)Cloud water, vapor, ice, and total
water tendencies, in units of g
dag‘ﬁ Gray dash lines denote
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B) Mean_ resolved vertical vclocytg
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respectively.
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Domain Avemggd Water Tendencies

Processes that contribute to 15—
“ pi minute ed water content
2 tendencies ai;ovc the surface
% |aycr for the total cloud domain,

Avg QT Flux Divergence Avg QV Flux Divergence

g in units of g day”‘\ The
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dvection terms (denoted with
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tendencies. Horizontal ‘ed ly
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the domain. Vertical eddy
12 R advection (WP) is the clivergance
of the vertical ecHy flux.
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AMPS Conceptual Model

Schematic of AMPS from model
resul

A) Evolution from initial cloud-
ree environment (gra
pro ile} to a ccouplc
AMPS toppcd boundar:
laycr (black proFilc)‘ Re
arrows indicate net effect of
dgnamical mixing and
sedimentation.

B) Evolution of dccoup[cd
AMPS  toppe oundary
lagcrovcronc our.
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