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1.  Introduction

 Anvil clouds play an important role 
in radiative heating in upper 
troposphere and impact the general 
circulation in the tropics.

 A high-resolution cloud resolving 
model is used to simulate mesoscale 
convective systems (MCSs) that may 
be compared to observed MCSs.

 Anchoring model microphysics to 
observations allows us to study 
radiative heating effects of anvil 
clouds as well as the water budget 
and dynamics of MCSs.
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2.  Model

- Goddard Cumulus Ensemble (GCE)1

- Forced with sounding budget data 
from AMMA processed at Colorado 
State University.
- Domain: 1024km x 1024km 
centered over Niamey, Niger
- Spatial Resolution:  1km
- Vertical levels:  63 with 300m or 
better resolution
- One-moment microphysics scheme2 
introducing ice crystal concentration 
in mixed phase region3.
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6.  Summary
 GCE generates thin anvil, medium 
anvil, and the tops of thick anvil with 
appropriate reflectivities at altitudes 
similar to that seen in observations.

 Higher ice nucleus concentrations 
in the mixed phase regions are 
required for sufficient anvil areal 
coverage.

 Magnitude of maximum modeled 
radiative heating is similar to 
observed heating rates.

 Although more cases should be 
studied, results suggest that MCSs 
can be modeled in a general 
circulation model to determine affects 
of anvil on tropical circulation.
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3.  MCS of August 10-11, 
2006
METEOSAT-8 infrared satellite imagery 
detects an MCS passing over Niamey 
(13N, 2E) on Aug. 10-11, 2006.

Instruments at the ARM site sampled a 
small region of leading anvil, a 
convective and stratiform region, and a 
trailing anvil.

5.  Model Evaluation

a.  Microphysics

 We compare modeled anvils to the observed anvil 
using joint probability density functions of reflectivity 
and altitude.

 Reflectivity of modeled anvils is estimated using a 
radar simulator6 with parameterizations for cloud 
ice7,8.

 Simulation 1:  Ice crystal concentration (ICC) in 
mixed phase region (MPR) of 1.2e-5cm-3.

 Simulation 2:  ICC in MPR of 1.2e-4cm-3.

b.  Radiative heating profiles

Since modeled MCSs occur at different times of day 
than observed systems, only longwave fluxes are 
considered for comparison.

Joint PDF of Reflectivity 
and Altitude (CFAD5)
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Observations Simulation 1 Simulation 2

Thin Anvil 55.8% 63.5% 52.8%

Medium Anvil 20.8% 35.6% 42.4%

Thick Anvil 23.3% 0.9% 4.8%

Simulation 1 Simulation 2

ii.  Fraction of total anvil that is thin, medium, or 
thick

i.  CFADS (include cloud ice only)

4.  ARM Observations
 GCE is anchored to ARM vertically pointing W-band cloud radar observations from Niamey, Niger.

 Radar-lidar retrieval used; retrieved cloud properties entered into radiative transfer code4.

 Contour interval for joint PDF is 0.001 from 0.001 (blue) to 0.018 (red).

Simulation 1

Simulation 2
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