The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

Robert Jackson¹, Greg M. McFarguhar¹, Alexei Korolev², Michael Earle², Peter S.K. Liu², Paul Lawson³, Sarah Brooks⁴, Mengistu Wolde⁵, Alexander Laskin⁶ and Matt Freer¹

¹University of Illinois at Urbana-Champaign, Urbana, IL ²Environment Canada, Downsview, Ontario, ³Stratton Park Engineering Company, Boulder, CO ⁴Texas A&M University, College Station, TX ⁵National Research Council, Ottawa, ON 6 Pacific Northwest National Laboratory, Richland, WA

1. Motivation

Aerosols indirectly affect mixedphase cloud microphysics through 3 mechanisms:

- glaciation indirect effect increases in ice nuclei (IN) → increases in ice crystal concentration (Nice)
- riming indirect effect increases in cloud condensation nuclei (CCN) → decreases in liquid drop size → inhibits riming, decreasing ice water content (IWC)
- cold 2nd indirect effect increases in CCN → increases in liquid concentration N_{lin}→ decreases in liquid drop size, inhibits ice crystal formation & decreases Nice

Examined effects for single-layer stratus (8, 18 & 26 Apr. 2008) sampled during Indirect and Semi-Direct Aerosol Campaign (ISDAC): comparison with Oct. 2004 Mixed-Phase Arctic Cloud Experiment (M-PACE) gives more insight.

2. Method for Determining Cloud-Aerosol Relationships for ISDAC

aerosol properties determined for ramped profiles flown by National Research Council of Canada Convair-580 during ISDAC following Fig. 1.

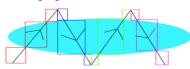


Fig. 1.Teal ellipse denotes cloud, black line flight track. Average below/above cloud interval denoted by colored box matching in cloud interval denoted by same color.

Fig. 2. Probes used to measure N_{lia}(D) & Nice(D) during ISDAC.

Relationship between in cloud & out of cloud Comparing SDs & mass closure tests gives best liquid & ice SDs (N_{lig}(D), N_{ice}(D)), & IWC.

- Cloud Droplet Probe (CDP) for liquid SDs & liquid water content (LWC) for D < 50 μm;
- 2D Stereo Probe (2DS): 50 < D < 300 µm. 2D Cloud Probe (2DC): 300 < D < 800 µm, & 2D Precipitation Probe (2DP): D > 800 μm
- Aerosol (N_{PCASP}) from Passive Cavity Aerosol Spectrometer (PCASP); IN from Continuous Flow Diffusion Chamber (CFDC)
- Images from Cloud Particle Imager (CPI) provide size-habit distributions needed for optimum m-D relations to give IWC

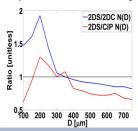


Fig 3: 2DS N_{ice}(D)/ 2DC or CIP N_{ice}(D) for ISDAC ice cases. Large variation for D < 300 µm consistent with measurement uncertainties.

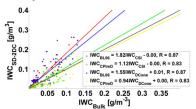


Fig 4. IWC from m-D relations applied to SDs separated by CPI habit more consistent with bulk IWC from Nevzorov or CSI probe than that derived from SDs using Baker and Lawson [2006] technique. Each point 30 s average.

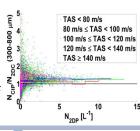
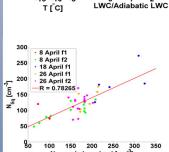


Fig 5. CIP Nice 2DC N_{ice} for 300 < D < 800 um vs. 2DP N_{ice} sorted by air speed. 30 s averages. 2DC & CIP agree well in this size range.

3. Analysis

%

0.8


0.6

0.4

0.2

0.5

LWC [g m⁻³]

N[⊏] 0.5

-0.5 -15 -10 -5

N_{PCASP} below cloud [cm⁻³] 0.05 · R = -0.21896 0.04 °= 0.03 0.01 400 600 800 1000 1200 N_{PCASP} above cloud [cm⁻³]

Fig 6. Mean/σ T & LWC /adiabatic LWC vs. normalized altitude z., for ISDAC cases. Subadiabatic LWC at $z_n > 0.8$ consistent with dry air entrainment from above

Fig 8. Mean N_{lia} & below cloud N_{PCASP} strongly correlated consistent with nucleation at cloud base. Adiabatic LWC vs. z_n (Fig. 6) \rightarrow condensation growth in updraft. Correlation with N_{PCASP} above cloud much weaker (0.37).

Fig 10. Cloud mean IWC & above cloud N_{PCASP} weakly correlated. Correlation with below cloud N_{PCASP} also weak (-0.32). Thus no evidence of riming indirect effect. Colors as in Fig. 8.

°

0.8

0.6

0.4

0.2

5

D ≥ 125 μm [L

effect, most likely from IN entrained above cloud (see IN vs. N_{PCASP} in Fig. 7). Colors as in Fig. 8. Correlation with N_{PCASP} below cloud much weaker (0.37). Oct 9 Oct 10-a Oct 10-b Oct 12 o_o LWC [g m⁻³]

0.3

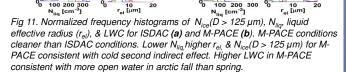
0.2

0.1

N_{ice D ≥ 125 μm} [L⁻¹]

Fig 7. Mean/ σ IN vs. N_{PCASP} above

cloud. IN sampled ~-25° C at water


sub-saturation. IN increase with

deposition nucleation important

Fig 9. $N_{ice}(D > 50 \mu m)$ & above

cloud N_{PCASP} strongly correlated

consistent with glaciation indirect

4. Conclusions

For ISDAC single-layer stratus:

- Nucleation of liquid drops occurred at cloud base
- Glaciation indirect effect operated through entrainment of IN & dry air above cloud
- Riming indirect effect did not play bia role

Differences in ISDAC & M-PACE singlelaver stratus consistent with operation of cold second indirect effect & greater surface fluxes during fall

Future modelling studies should isolate these effects

5. Reference

Baker, B. A., and R. P. Lawson, 2006; J. Appl. Meteor., 45, 1282-1290.

6. Acknolwedgements

This work was supported by the Office of Biological and Environmental Research (BER) of the U.S. Department of Energy (DE-FG02-02ER63337, DE-FG02-07ER64378 and DE-FG02-09ER64770) as part of the ASR + AAF program. Data were obtained from the ARM program archive, sponsored by the U.S. DOE, Office of Science, BER, Environmental Sciences Division. **ASR**

