The dependence of ice microphysics on aerosol concentration in
arctic mixed-phase stratus clouds during ISDAC and M-PACE

Robert Jackson', Greg M. McFarquhar', Alexei Korolev2, Michael Earle?, Peter S.K. Liu2, Paul Lawson?, Sarah Brooks*, Mengistu Wolde?>,

Alexander Laskin® and Matt Freer?
1University of lllinois at Urbana-Champaign, Urbana, IL 2Environment Canada, Downsview, Ontario, 3Stratton Park Engineering Company, Boulder, CO “Texas A&M University, College Station, TX °National
Research Council, Ottawa, ON ¢Pacific Northwest National Laboratory, Richland, WA

1. Motivation
Aerosols indirectly affect mixed-
phase cloud microphysics through 3
mechanisms:

+ glaciation indirect effect —
increases in ice nuclei (IN) >
increases in ice crystal
concentration (N;c)

+ riming indirect effect — increases
in cloud condensation nuclei
(CCN) - decreases in liquid drop
size - inhibits riming, decreasing
ice water content (IWC)

« cold 2" jndirect effect —increases
in CCN - increases in liquid
concentration N;;-> decreases in
liquid drop size, inhibits ice
crystal formation & decreases N,

Examined effects for single-layer

stratus (8, 18 & 26 Apr. 2008)

sampled during Indirect and Semi-

Direct Aerosol Campaign (ISDAC);

comparison with Oct. 2004 Mixed-

Phase Arctic Cloud Experiment (M-

PACE) gives more insight.
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2. Method for Determining Cloud-Aerosol Relationships for ISDAC

Relationship between in cloud & out of cloud Comparing SDs & mass closure tests gives

aerosol properties determined for ramped
profiles flown by National Research Council -«
of Canada Convair-580 during ISDAC

following Fig. 1.

Fig. 1.Teal ellipse denotes cloud, black line
flight track. Average below/above cloud interval
denoted by colored box matching in cloud
interval denoted by same color.

Ratio [unitless]

best liquid & ice SDs (N;i4(D), Nie,(D)), & IWC.

Cloud Droplet Probe (CDP) for liquid SDs &
liquid water content (LWC) for D < 50 pm;

2D Stereo Probe (2DS): 50 < D < 300 pm, 2D
Cloud Probe (2DC): 300 < D < 800 pm, & 2D
Precipitation Probe (2DP): D > 800 um
Aerosol (Npcasp) from Passive Cavity

Aerosol Spectrometer (PCASP); IN from
Continuous Flow Diffusion Chamber (CFDC)

» Images from Cloud Particle Imager (CPI)

provide size-habit distributions needed for
optimum m-D relations to give IWC
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Fig. 2. Probes used to measure Njy(D) & 0 uncertainties.
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0.32). Thus no evidence
of riming indirect effect.
Colors as in Fig. 8.
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Fig 11. Normalized frequency histograms of Ni(D > 125 um), Ny, liquid
effective radius (r,), & LWC for ISDAC (a) and M-PACE (b). M-PACE conditions

cleaner than ISDAC conditions. Lower Ny, higher re; & Nigg(D > 125 um) for M-
PACE consistent with cold second indirect effect. Higher LWC in M-PACE
consistent with more open water in arctic fall than spring.
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Fig 4. IWC from m-D relations applied to SDs
separated by CPI habit more consistent with
bulk IWC from Nevzorov or CSI probe than that
derived from SDs using Baker and Lawson
[2006] technique. Each point 30 s average.
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4. Conclusions
For ISDAC single-layer stratus:

*  Nucleation of liquid drops occurred
at cloud base

«  Glaciation indirect effect operated
through entrainment of IN & dry air
above cloud

+ Riming indirect effect did not play
big role

Differences in ISDAC & M-PACE single-
layer stratus consistent with operation
of cold second indirect effect & greater
surface fluxes during fall

¢ Future modelling studies should
isolate these effects
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