Raw Ingredients for Evaluating and Improving Turbulence Parameterizations

= Turbulence redistributes heat, momentum, and

moisture in the boundary layer

= Subgrid scale in most models and needs to be

parameterized in CRMs/GCMs

= Accurate representation of the fluxes of heat and
moisture at the top of convective boundary layer

(also called interfacial layer — IL) is critical

= Do LES models accurately capture structure of

turbulence in CBL and fluxes at IL?
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The high-resolution water vapor mixing ratio (g) data from a
LES model run (top) compared with the observed g from the
Raman lidar (bottom) at the ARM SGP site. The LES used the o
ARM-observed surface fluxes at the bottom, and RUC forcing qer
at the boundaries (both to initialize and to nudge the mean

fields during the simulation). Note the markedly smaller g

variance in the IL.
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= Raman lidar (RLID), high-spectral-resolution lidar (HSRL), and Doppler lidar have the temporal resolution, stability, and noise performance to look at higher order moments
= ARM dataset provides long time-series for analysis; currently data from the SGP have been (partially) analyzed
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Median g Variance, 3" Moment, and Skewness Profiles from RLID
Thin lines are 25'" and 75" percentiles, Dashed lines are 10 and 90*"
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HSRL Aerosol Backscatter Dataset in Norman, OK in 2012
17 cases, all with RH < 80% throughout CBL
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HSRL Skewness vs. Kurtosis at IL
(Very low noise allows K to be computed)
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to skewness profile or RLID g
(i.e., negative in CBL, crosses
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Relationships bety/een RLID g Variance at IL and Profiles of:

Able to predict g variance at IL from
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Relationship between skewness and,
kurtosis around IL is well defined
Able to predict shape/magnitude of
the 3"Y moment and skewness profile
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from the q variance at IL
Does LES output match these o0
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Take Home Point: The long-term high-resolution ARM lidar data sets are illuminating properties
of the turbulent convective boundary layer that need to be represented by numerical models.
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