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Background

In a recently published study (Phillips and Klein, JGR 2014), we investigated selected features of land-atmosphere coupling observed at the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plains Central Facility (SGP CF) site near Lamont, Oklahoma USA.
Following the perspective of boundary-layer specialist Alan Betts (e.g. Betts, 2009 JAMES), land-atmosphere coupling is manifested in the covariations of daily averaged atmospheric surface/boundary-layer variables with land variables such as soil moisture, as expressed graphically by
scatter plots. To investigate details of such land-atmosphere interactions at the SGP site, we exploited the ARM Best Estimate (ARMBE) and supplementary field observations of soil moisture (such as the “SWATS” data set) that were available for the years 1997-2008.

Climate models--when operating realistically--should exhibit similar covariance relationships in their land-atmosphere interactions. To determine whether this is the case, we have begun to analyze hindcasts of May-August of 2008-2009 made with version 5 of the Community Atmospheric
Model (CAM5) coupled to version 4 of the Community Land Model (CLM4). For these extended two-year hindcasts, the CAM5’s global atmospheric state variables were initialized daily from the corresponding ECMWEF Year of Tropical Convection (YOTC) Reanalysis variables, while the
CLM4’s soil moisture and other land variables were spun up, beginning several months prior to the start of the 2008 hindcasts, via application of the CAMS5’s radiative and precipitation forcings. Downscaling the hindcast variables to the SGP site then allows a detailed comparison with
ARM 2008-2009 May-August observations to be made. The extent to which CAMS5 fails to adequately simulate the observed land-atmosphere covariance relationships implies a need to make corrections in the atmospheric model’s forcings of the land, as well as in the land or ABL
parameterizations. We will investigate such issues further by employing planned decade-long CAM5 hindcasts, to be run under an improved land spin-up protocol.

Methodology Selected Observational Results

For 12 years of warm-season observations at the SGP Central Facllity site, scatter plots illustrate the covariation of paired daily averaged land and atmospheric variables. Values of the
correlation R and sensitivity index | also are shown for each pairing. For daily-average samples of x and y over 12 warm seasons, a correlation R > ~0.2 is statistically significant at the
99% confidence level, assuming every 5t sample is statistically independent.

In elaborating his perspective on land-atmosphere coupling, Betts makes use of several derived
dimensionless quantities:
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In applying Betts’ approach, we used the following metrics to quantify the covariations of land and atmospheric
variables x and y:
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Correlation Coefficient R = x"y'/(o, ©,), where the numerator is the product of multi-year deviations x’and y’
from the long-term means of x and y, and the denominator is the product of the corresponding standard
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(after Dirmeyer, GRL 2011) is also calculated:

o _ _ , o . _ The observed surface evaporative fraction EF correlates positively with the 10-cm SMI , and the amount of surface evaporation thus is limited mainly by soil moisture amount, rather than by net radiation
Sensitivity Index | = o, B, where o, Is the x variable’s standard deviation, and f is the slope of the linear R, (i.e. moisture-stressed conditions tend to prevail at this SGP site). The surface relative humidity RH also correlates positively with SMI, while the 2-meter surface air temperature T correlates
regression of y versus Xx. | thus measures how much a change in variable y occurs for a standard-deviation negatively (T increases as the soil dries out). Because the derived LCL falls as T decreases and RH increases, the LCL varies inversely with SMI. (See Phillips and Klein, JGR 2014 for further details.)

change in variable x. (Note: R is a dimensionless metric, while | takes on the same units as variable y.) - _ _ _ _
Sensitivity of Land-Atmosphere Coupling to Different Soil Moisture Measurements

Warm-Season Time Series of Three Different Soil Moisture Measurements at the SGP Site: Dry 2006 vs Wet 2007

2006 May-Aug Precipitation Rate and 5em-EWavgSWATS, 2.5cm-EBBRmultl.5, 5em-CO2FLX Soil Moistures 2007 May-Ang Precipitation Rate and 5em-EWavgSWATS, 2.5em-EBBRmult] 5, 5em-CO2FLX Soil Moistures
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OBS versus CAM5: Comparison of Radiative and Precipitation Forcings
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Comparing covariations of CAM5 atmospheric surface or boundary-layer variables versus 10-cm soil moisture index SMI with the corresponding OBS pairings indicates that CAMS5 variables mostly co-vary less coherently (with lower correlations R) than the
OBS, but with some model variables (e.g. RH and T ) displaying more “sensitivity” (higher | values) to changes in soil moisture. CAMS5 soil moisture also tends to frequent relatively drier states than observed. These model behaviors are consistent with the too-
scant model precipitation, but possibly also are related to excessive surface evaporation and/or drainage of soil water in the CLM4 land model. Identifying the cause(s) of the apparent model deficiencies will be the focus of future investigations involving
planned decade-long hind-casts, to be run under a more realistic land spin-up protocol that will employ observed radiative and precipitation forcings of the CLM4 land model. Further complicating the evaluation of land-atmosphere coupling in climate models,
however, Is the apparent sensitivity of the coupling strength (as inferred from the R and | metrics) to different observational measurements of soil moisture at the same location.

ASR *The Cloud-Associated Parameterizations Testbed (CAPT) Project operates under the auspices of the U.S. Department of Energy’s Atmospheric System Research (ASR) Program, and conducts its work at Lawrence Livermore National Laboratory under general contract DE-AC52-07NA27344.
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