
ARM/ASR Meeting March 2017

Science Product Development through
Community Collaboration and the Open
Source Framework

JENNIFER COMSTOCK, KRISTA GAUSTAD, JOE HARDIN, EUGENE CLOTHIAUX

Laura Riihimaki, Scott Collis, Pavlos Kollias

April 28, 2017 1

Science Product Development
Led by Team of Scientists

ARM/ASR Meeting March 2017 April 28, 2017

Translators

Laura Riihimaki
Clouds - Radiometric

Connor Flynn
Aerosols

Scott Collis
Precipitation Radar

Scott Giangrande
Cloud Radar

Shaocheng Xie
Modeling

Laurie Gregory
External Data

Products

Chitra Sivaraman
Software

Development

Justin Monroe
Data Quality

2

VAP Development Process

Community
Input

VAP Initiation
(Translators)

VAP
Development
(Translators,

Developers, &
Users)

Evaluation
(Users)

Automated
Production,

Archive,
Dissemination

ARM/ASR Meeting March 2017 April 28, 2017 3

Initiation
• Community Need
• PI Sponsor –

provides code
• Contract

Development
• Traditional path
• Code Sprint
• Evaluation or

Production?

Release
• Production ready
• Documentation

VAP Development Workflow

April 28, 2017ARM/ASR Meeting March 2017 4

VAP Development Process

Code Sprint Greatly Reduces VAP
Development Time

DOD approved, historical
processing done. VAP
released for Evaluation

Complete code, port to
ARM ADI environment

Code Sprint: draft
implementation plan,
recode in Python

Last week of
June 2016 July 2016 August 2016 Sept. 2016

Additional analysis & testing,
prepare for release

VAP development support (~70 hours)

Two more complex SACRADV code sprint VAPs reached
Evaluation in Jan/2017

SACR Advanced Velocity-Azimuth Display (ADV-VAD) VAP

Prioritizing ARM Activities
Value Added Products

Science
Community

UEC

Aerosol & Radar
Science
Groups

ARM Mission

Priorities

Impact
(Cost/Benefit)

April 28, 2017ARM/ASR Meeting March 2017 6

Translator Team

ARM Management Review

ARM Mission
Megasites
Focused Field Campaigns
High-Resolution Modeling
Long-Term Data Record

Session Topics

■Introduction to ARM Science Product
Development (Jennifer Comstock)

■ARM Data Integrator (Krista Gaustad)
■Open source development and code sharing

(Joe Hardin)
■Scientists Perspective on Code Sprints –

Experiences from SACR ADV (Eugene
Clothiaux)

April 28, 2017 7ARM/ASR Meeting March 2017

Helpful hints to make your code
ADI compatible

KRISTA GAUSTAD
Pacific Northwest National Laboratory—ARM Developer, ADI lead

April 28, 2017 8

ARM Data Integrator (ADI)
Simplifies Code Development and
Application of Standards

Suite of tools, code libraries, structures and interfaces to
standardize ARM code and data, and make operational
processing of data products more robust and efficient.

 Promotes robust
processes that use well
tested libraries and
functions
 Enforces ARM Standards
 Documents dependencies,

metrics, status, and logs
 Automates reprocessing
 Captures provenance
 Streamlines algorithm

implementation

What can users do to make their code ADI
compatible?

4/28/2017 10

1. Write your code in an ADI compatible language
• C
• Python
• IDL
• MatLab

2. Separate the code that reads and writes data from

all other code

Separating input/output functionalities

◼ Read data
▶ Get file list
▶ For each file

●For each line in file
◼ Read var data into

array
◼ Apply limit tests

◼ Perform analysis
◼ Write data

◼ Get data from ADI
▶ For each day

●For each sample
◼ Read var data into

array

◼ Preprocess
▶ For each sample

●Apply limit tests

◼ Perform analysis
◼ Put data into ADI

4/28/2017 11

Additional best practices for creating
successful operational code

4/28/2017 12

 Comment your code well
Modularize your code
 Fun with flags

• Test your algorithm for long periods of time to
understand when it does and doesn’t work

• Document times when algorithm works poorly (because
of data quality, algorithm assumptions not met, etc) with
quality flags

https://www.arm.gov/policies/coding-guidelines

https://www.arm.gov/policies/coding-guidelines

What can users do to make their code ADI
compatible? Top two things:

4/28/2017 13

1. Write your code in an ADI compatible language
• C
• Python
• IDL
• MatLab

2. Separate the code that reads and writes data from

all other code

Collaborative Code Sharing and
Development

JOSEPH C HARDIN, SCOTT COLLIS

April 28, 2017 14

PNNL Radar Engineering and Operations
DOE ARM/ASR PI Meeting 2017

Collaboration
ARM loves contributed code and algorithms.
It will spend developer time adapting community algorithms into VAPS.

This works better if the original author is involved.
Development of VAPS requires a back and forth between a

Developer who does not understand the underlying algorithm
Science point of contact who does not understand ARMs data infrastructure.

Let’s not re-invent the wheel. There are accepted methods for
development between distributed teams.

April 28, 2017 15

Where?

ARM uses SVN internally (for now).
git is a better choice for external
collaboration.
There are many online git repositories to
choose from.

ARM maintains a presence on both Github,
and a enterprise hosted Gitlab server
(code.arm.gov).

Use git. There is a learning curve. I promise
it is worth it.

The standard git workflow (Commit often,
branch, pull request) simplifies software
development and collaboration.
Use it even if it’s just you.
E-mail me. I’ll provide resources to learn it.

April 28, 2017 16

Advice on Structure of Code

Isolate code into at least three components.
Reading, Writing, Processing

Writing will be handled by ADI. Use common structures such as hash
tables to store data.
Top level interface.
Use an appropriate style standard (Google, pep8, etc)
Handle edge cases. Real data is messy.
Make paths configurable. Generally good deployment practices.

April 28, 2017 17

Example Collaborative Development:
Before Handoff

You want to develop a fancy new precipitation VAP based on gauge
corrected radar data.
First steps:

Develop algorithm and test it.
Publish it.
Run a batch of data through, store output for reference dataset.

In preparation for handoff to developers:
Develop list of inputs

Will it work for any data level? Any radar? All gauges? Does sampling time matter?
Remember ARM operational configurations can change.

Handle edge cases, missing data, missing data streams.
If gauge is missing, still do QPE from radar only?

List output variables, and their associated metadata

April 28, 2017 18

Example Collaborative Development:
Interaction with Developer

Back and forth with developer
They are not domain experts, but usually have some knowledge in the area.
Primary job is to translate your algorithm into ARM infrastructure.
Developer will put algorithm into ADI, work on data flow, generally
operationalize.
This will be a back and forth process.

Reference files
They will generate a set of files to ensure modifications to output data can be
tracked and known.

Metadata
ARM has somewhat strict metadata standards. It can be a painful process but
is useful to end users.

Evaluation Area (Limited beta period)
Release

April 28, 2017 19

A few tips

Pareto Principle (80/20 rule).
Why submit VAP?

Fame, Fortune, and more realistically citations for a paper.
Take the messiest dataset you can find, realize the real data will likely be
worse (At least at times)
Don’t fail gracefully, fail early.

Use assertions.
Use exceptions and failure codes to signify abnormal conditions, don’t
just blindly crash.

A good references:
“Effective Computation in Physics” – Anthony Scopatz, Kathryn D. Huff

April 28, 2017 20

	Science Product Development through Community Collaboration and the Open Source Framework
	Science Product Development Led by Team of Scientists
	VAP Development Process
	VAP Development Process
	Code Sprint Greatly Reduces VAP Development Time
	Prioritizing ARM Activities�Value Added Products
	Session Topics
	Helpful hints to make your code ADI compatible
	ARM Data Integrator (ADI) Simplifies Code Development and Application of Standards
	What can users do to make their code ADI compatible?
	Separating input/output functionalities
	Additional best practices for creating successful operational code
	What can users do to make their code ADI compatible? Top two things:
	Collaborative Code Sharing and Development
	Collaboration
	Where?
	Advice on Structure of Code
	Example Collaborative Development:�Before Handoff
	Example Collaborative Development:�Interaction with Developer
	A few tips	

