Hygroscopicity and Mixing State

James Hudson and Stephen Noble

DRI, Reno, NV

The Desert Research Institute (DRI) CCN spectrometers with 100+ channels of critical supersaturation, (S_c) resolution and greater, mainly low S_c range can resolve bimodality.

When compared with simultaneous dry particle spectra from a DMA/SMPS kappa can be determined.

This is done by overlaying the two spectra by transposing size to S_c by applying kappa. Kappa is then tuned to provide the best fit of the two spectra. This fit may vary over the S_c /size range.

But sometimes they cannot agree, especially at high S_c where some particles are too small or not hygroscopic enough to be detected by the CCN.

The difference between the spectra indicates external mixing. Agreement of the spectra indicates internal mixing or pure substance. These measurements have time resolution of seconds, continuously.

The entire spectra are determined simultaneously in the DRI CCN spectrometers. e present surface data from SGP, May 2003

craft data from MASE, off central California, July 2005

ICE-T Caribbean, July 2011

Fig. 1. Differential CCN and DMA concentrations plotted against critical S (S_c). DMA sizes transposed to S_c by assuming a (kap). a and b show measurements under polluted stratus clouds off the central California coast; MASE. Panel a shows a bimodal spectrum where κ 0.35 provides the best fit of the DMA data with CCN spectra fo the higher S_c mode (right), whereas κ 0.30 provides the best fit for the lower S_c mode (cloud-processed). Hoppel minimum indicate S_{eff} 0.20. Panel b shows a monomodal spectrum where κ 0.20 provides the best agreement with the CCN data. c and d are associated with Caribbean cumuli; ICE-T. Hoppel minimum indicates S_{eff} 0.40% in panel c.

May 19B, 2003;

→ S1 v 1427-1435L → Sc0.15kap v 1426.0-1436.1S

May 13, 2003 Y13NEW

May 24, 2003

CCN differential spectrum July 27, 2011 ICE-T

Sc

CCN differential spectrum July 30, 2011 ICE-T RF13

2

July 24, 2011 ICE-T

1

CCN differential spectrum July 30, 2011 ICE-T RF13

Sc

	flts	cases	secs	К
MASE	9	135	7509	0.40 ± 0.20
below				
MASE	9	92	1657	0.24±0.16
above				
ICE-T	8	50	6162	0.34±0.22