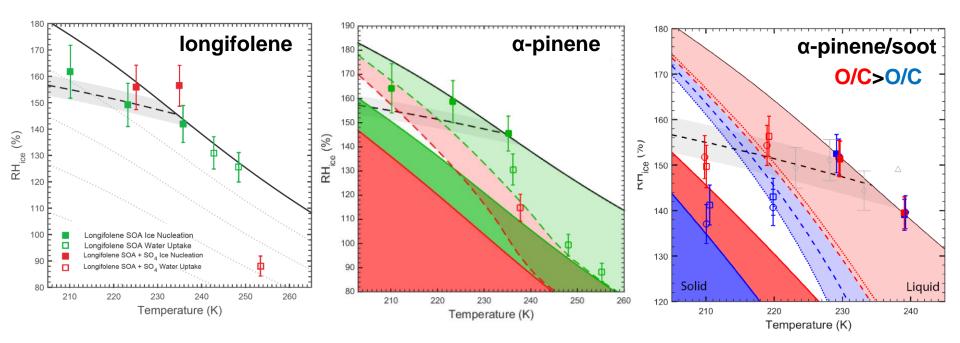


The role of anthropogenic and biogenic SOA in cold cloud formation

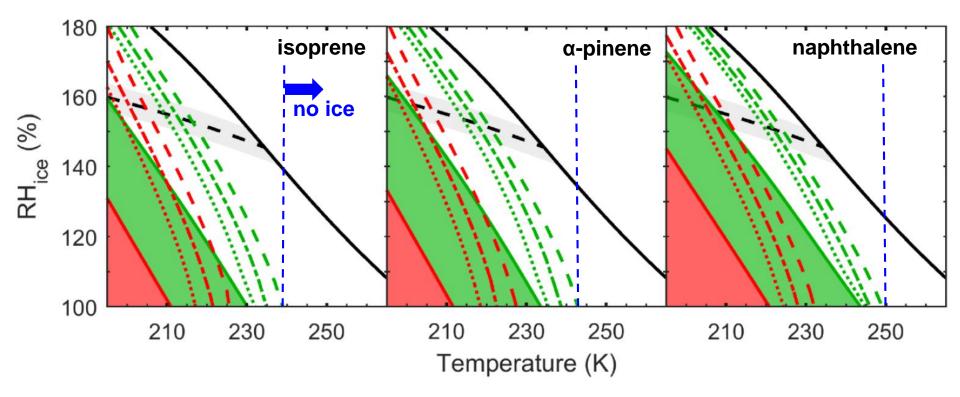
Joseph C. Charnawskas, Peter A. Alpert, Andrew T. Lambe, Thomas Berkemeier, Rachel E. O'Brien, Paola Massoli, Timothy B. Onasch, Manabu Shiraiwa, Ryan C. Moffet, Mary K. Gilles, Paul Davidovits, Douglas R. Worsnop, and **Daniel A. Knopf**

> Institute for Terrestrial and Planetary Atmospheres School of Marine and Atmospheric Sciences Stony Brook University (SUNY)


Particle phase and mixing state of laboratory generated SOA particles with and without sulfates and soot: α-pinene, longifolene, isoprene, naphthalene derived SOA particles

Particles generated using PAM, OH oxidation.

Charnawskas et al., Faraday Disc., 2017


Ice nucleation propensity of amorphous SOA particles with and without sulfates or soot

- Presence of sulfates reduces RH for water uptake.
- Sulfates act as plasticizer. Reduces ability of SOA to act as IN.
- Soot can act as immersion ice nuclei at higher temperature.
- Biogenic SOA seem not to be efficient IN under mixed-phase cloud conditions, in contrast to anthropogenic SOA.

Charnawskas et al., Faraday Disc., 2017

SOA phase state estimation by numerical diffusion model accounting for updraft velocity- Implications for ice nucleation

- Glass transition temperature and full deliquescence relative humidity depend on sulfate presence.
- T_g and FDRH depend strongly on updraft velocities.
- SOA phase state may govern ice nucleation pathway.

Charnawskas et al., Faraday Disc., 2017

@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2016JD025817

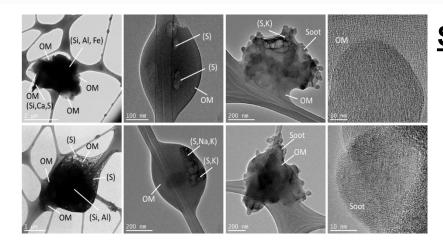
Key Points:

- Long-range transported particles in the free troposphere (FT) can promote ice formation
- Ice nucleating particles at a remote FT site are multicomponent and contain organics
- Aged FT particles transported from different locations show similar ice formation potentials

Supporting Information:

Supporting Information S1

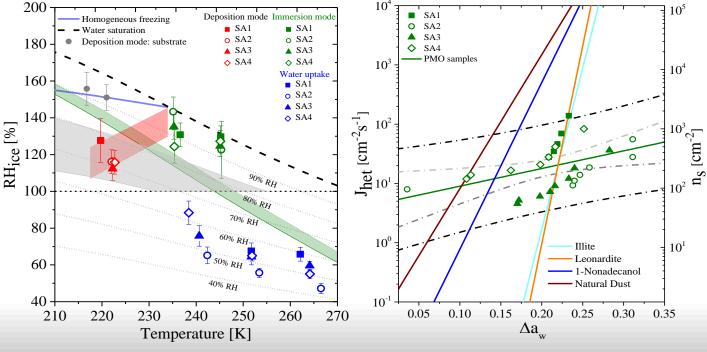
Correspondence to:


S. China and P. A. Alpert, schina@mtu.edu; peter.alpert@psi.ch

Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

Swarup China^{1,2,3} (D), Peter A. Alpert^{4,5} (D), Bo Zhang^{1,6} (D), Simeon Schum^{1,7} (D), Katja Dzepina^{7,8} (D), Kendra Wright^{1,2}, R. Chris Owen^{1,6,9}, Paulo Fialho¹⁰ (D), Lynn R. Mazzoleni^{1,7} (D), Claudio Mazzoleni^{1,2} (D), and Daniel A. Knopf⁴ (D)

JGR


¹Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan, USA, ²Department of Physics, Michigan Technological University, Houghton, Michigan, USA, ³Now at Pacific Northwest National Laboratory, Richland, Washington, USA, ⁴Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA, ⁵Now at Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen, Switzerland, ⁶Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, Michigan, USA, ⁷Department of Chemistry, Michigan Technological University, Houghton, Michigan, USA, ⁸Now at Department of Biotechnology, University of Rijeka, Rijeka, Croatia, ⁹Now at US Environmental Protection Agency, RTP, North Carolina, USA, ¹⁰Instituto de Investigação em Vulcanologia e Avaliação de Riscos da Universidade dos Acores, Ponta Delgada, Acores, Portugal Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

S. China & P. Alpert et al., JGR, accepted

- Particles chemically complex.
- Particles associated with organic material.

- Particles initiate immersion freezing & deposition ice nucleation.
- Derived water activity based J_{het} and n_s parameterzations.

