Improving the WBF process in CAM5 and impacts on cloud phase partitioning

Xiaohong Liu, M. Zhang, Y. Wang, D. Zhang, Z. Wang University of Wyoming

> DOE ARM/ASR PI Science Team Meeting March 13-16, 2017

1

Wegener-Bergeron-Findeisen

(a)

Homogeneous mixing:

• Mixing zone volume: (100) km (100) km(1) km = (10¹³) m³ in the typical GCM grid box.

Heterogeneous mixing (pocket structure) (Korolev et al. 2003):

- Pockets extend to (10²) m in extreme case.
- (1⁰) m as the mixing zone.
- Mixing zone volume: (10^3) m (10^3) m(10) m = (10^7) m³.

Wegener-Bergeron-Findeisen

- The supersaturation relaxation time scale for ice deposition is given by $\tau_i = (epsi)^{-1}$ for ice.
- τ_i determine the local in-cloud deposition rate of water vapor onto cloud ice through

$$A = \frac{q_v^* - q_{vi}^*}{\Gamma_p \tau_i}$$

where q_v^* is the in-cloud water vapor mixing ratio, q_{vi}^* is the in-cloud water vapor mixing ratio at ice saturation and _p is the psychrometric correction to account for the release of latent heat.

• Apply a random number to simulate randomly distributed subgrid pocket structures of pure liquid and pure ice.

The ARM NSA Mixed-Phase Arctic Cloud Experiment (M-PACE) October 9 to October 15, 2004

LWC in Boundary Layer Mixed-phase Clouds

The ARM NSA Mixed-Phase Arctic Cloud Experiment (M-PACE) October 9 to October 15, 2004

IWC in Boundary Layer Mixed-phase Clouds

Boundary Layer Mixed-Phase clouds Model vs. Aircraft Data (Oct. 9-12)

