
complementary aircraft measurements

2) possible connection between air masses sampled at Ascension and the plane

NASA-2016 data becomes publicly available in June 2017

CLoud-Aerosol-Radiation Interactions and Forcing: Year 2017 (CLARIFY-2017)

Institutes and Investigators

National Centre for Atmospheric Science

Met Office

Haywood, Collins

Blyth, Carslaw, Field

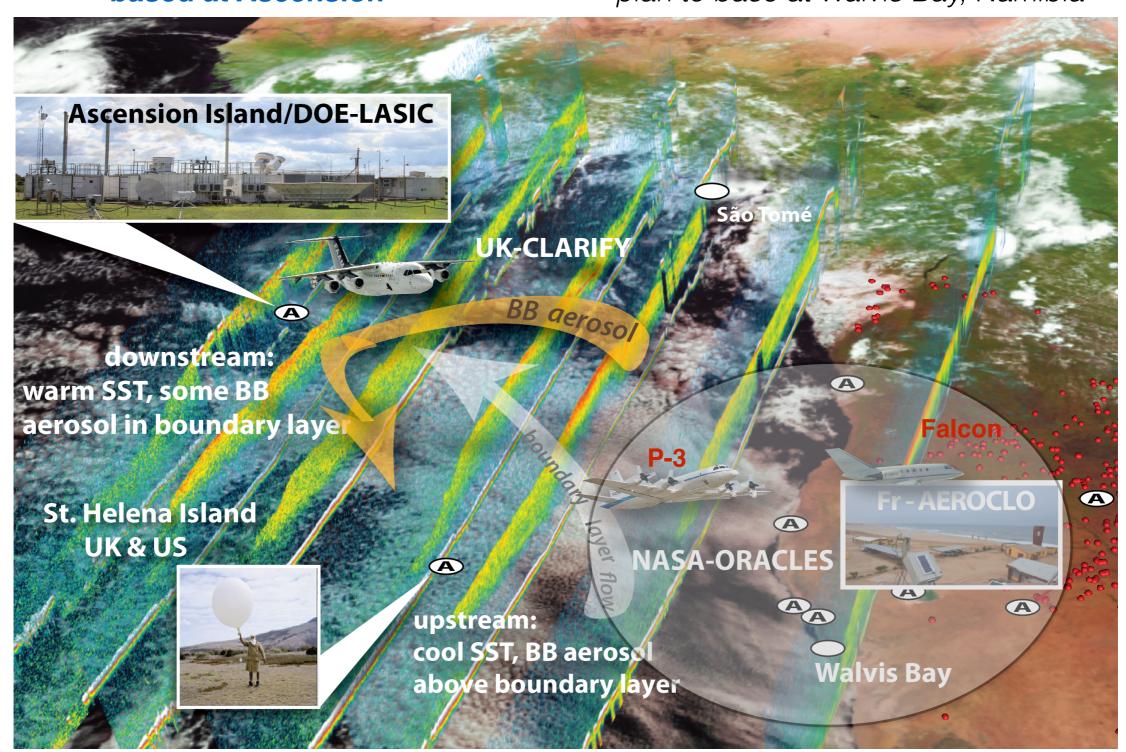
Coe, Gallagher, Choularton, Allan, Connolly, Dorsey

Stier, Washington

Bellouin, Highwood

Abel, Taylor, Lock, Jones, Milton

Partners (£1.2m matched support secured): Met Office


complementary aircraft measurements

August-September, 2017: UK

August-Sept 2017: NASA-P3, French

based at Ascension

plan to base at Walvis Bay, Namibia

Size resolved number 100 < D < 6400 μm

Size resolved number $10 < D < 1280 \mu m$ Size resolved number $0.5 < D < 960 \mu m$

Bulk LWC and TWC

Bulk LWC and TWC

Size resolved number 3 < D < 50 µm, 50Hz

Aerosol residual physio-chemical analysis

DMT CIP-100

SPEC 2D-S

SPEC Fast FSSP

SEA WCM-2000

Brechtel CVI

DMT CAPS (CAS + CIP-15)

Nevzorov LWC/TWC

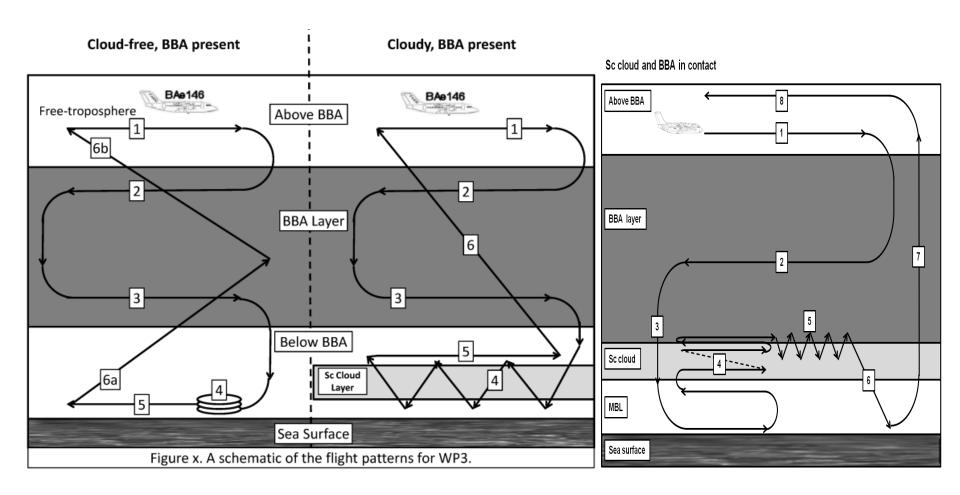
FAAM

UoM

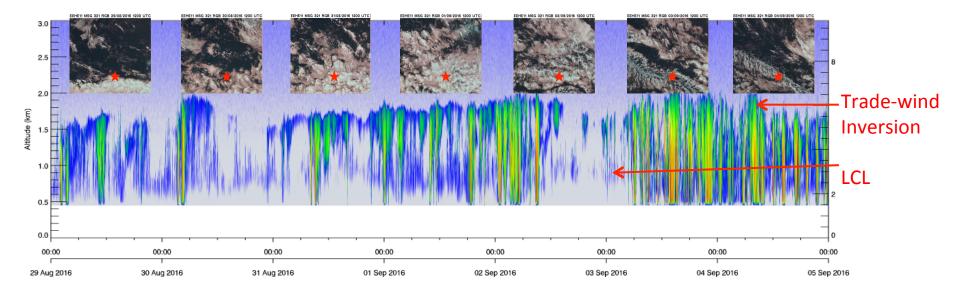
UoM

UoM

FAAM


FAAM

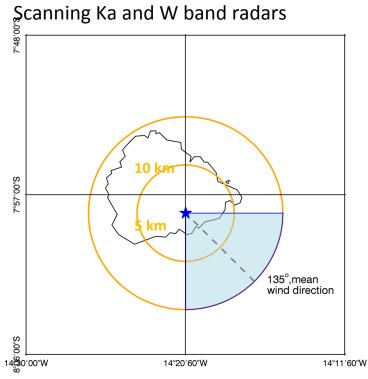
Science flights: Aug 15th – Sept 8th
Science flight hours: 90 hrs
Duration of each flight: 3.5 hr
Single flights possible Mon, Thu, Sat
Double flights possible Tue, Wed, Fri


Instrumentation: significant overlap with AMF1

Aerosol microphysics			Radiation/Remote sensing		
DMT-SPP200 PCASP	FAAM	Size resolved number 0.1 < D < 3 μm	Leosphere lidar	Met Office	355 nm UV backscatter lidar with depolarisation
TSI 3786 water filled CPC	FAAM	Total number D > 2.5 nm	Broad Band Radiometers	FAAM	Upper and lower pyranometer (0.3-3μm) and red dome (0.3-0.7μm)
GRIMM	FAAM	Size resolved number 0.25 < D < 32 μm	Broad Band Radiometers	FAAM	Upper and lower pyrgeometer (4.5-42 μm)
SMPS	UoM	Size resolved number 10 < D < 500 nm	sws	Met Office	Spectrally resolved radiance (300-1700 nm), pointable
DMT CCN-200	FAAM	Continuous flow CCN at 2 supersaturations	SHIMS	Met Office	Spectrally resolved radiance (300-1700 nm), broadband
CVI TSI 3010 butanol CPC	UoM	Total number D > 10 nm	MARSS	Met Office	89 and 157 GHz channels for LWP and WVP
CVI APS	UoM	Size resolved number 0.37 < D < 20 μm	Trace gas chemistry		
CVI UHSAS	UoM	Size resolved number 0.055 < D < 1 μm	Ozone TE49C	FAAM	UV Photometric O3 analyzer
EXSCALABAR PCASP	Met Office	Size resolved number 0.1 < D < 3 μm	Aero-Laser AL-5002	FAAM	со
Aerosol composition and optical properties			Fast Greenhouse Gas Analyser	FAAM	CO2 and CH4
Compact Time of flight AMS	UoM	Size resolved non-refractory composition 4 < Daero < 700 nm	SO2 TE43C TL	FAAM	SO2
SP2	UoM	Single particle soot detection	Thermodynamics		
PSAP	FAAM	Absorption coefficient at 565 nm	Turbulence probe	FAAM	3D winds, 32 Hz
2 x TSI 3563 nephelometers	FAAM	Scattering coefficient at 450, 550, 700 nm	AIMMS-20	Met Office	3D winds, 20 Hz
EXSCALABAR Brechtel TAP	Met Office	Absorption coefficient at 467, 528, 652 nm	Dropsonde system	FAAM	Profile temperature, wind, humidity
EXSCALABAR PAS	Met Office	Dry and thermally denuded absorption coefficient at 405, 532, 662 nm	Total water probe	Met Office	Total water content, 64Hz
EXSCALABAR CRDS	Met Office	Extinction coefficient at 405, 662 nm dry. 405 nm also at RH = 75, 90%	WVSS-II x 2	Met Office	Water vapour
Filters	UoM	Sub and super-micron nucleopore	Buck CR-2	FAAM	Water vapour
Cloud physics			General Eastern	FAAM	Water vapour
DMT CDP	FAAM	Size resolved number 3 < D < 50 μm	De-iced and non-deiced temperature	FAAM	Temperature, 32 Hz
DMT CIP-15	FAAM	Size resolved number 15 < D < 960 μm			

Example flight profiles

Complementing LASIC


The boundary layer is often decoupled. Are the surface based aerosol measurements the same as at cloud-base or being entrained at cloud top?

Frequent occurrence of clouds at Ascension limits the ability of surface remote sensing to detect smoke in the free troposphere.

Co-ordinating with LASIC

Upwind legs at 1000 ft ASL same altitude as AMF1 Direct over-flights of surface site (5000 ft?)

Radar will perform RHI scans over a 90 degree sector centred on the mean wind direction (blue shading). Co-ordinated flying in range of the radar.

Aircraft observations provide in-cloud and above-cloud measurements

AMF1 radars capture the spatial structure and evolution of the clouds measured by the aircraft

Complementary observations to constrain the direct effect of the smoke in cloud free skies

Use of in-situ measurements to evaluate ground based retrievals

UK data policy

"CLARIFY aircraft datasets will be made available to project partners and collaborators immediately after quality control has been performed.

Data will be made publically available 2 years after the campaign."