Simulated aerosol radiative forcing by overlying and entrained smoke aerosol: Importance of background conditions and longwave impacts

Xiaoli Zhou (McGill Univ.), Andrew Ackerman(NASA GISS), Ann Fridlind (NASA GISS), Rob Wood (Univ. Wash), and Pavlos Kollias (Stony Brook Univ.)

Background

- Semi-direct effect (Hansen et al. 1997): aerosol solar absorption evaporates embedded clouds,
 +ive shortwave (SW) radiative forcing at TOA (DF)
- Johnson et al. (2003): heating *immediately above* Sc strengthens inversion, reduces entrainment drying, thickens clouds, -ive SW DF
- Here: consider effect of overlying absorbing aerosol (active as CCN) on transition of Sc → TrCu, +ive SW RF? –ive SW DF?
- Unperturbed: advection across warmer SSTs drives progressive entrainment, cloud-top LW cooling cannot maintain well-mixed PBL → buildup of heat and moisture in surface layer drive shallow Cu (Wyant et al. 1997)
- Yamaguchi et al. (2015): absorbing aerosol *delays* transition via slower entrainment, less drizzle,
 –ive change in SW cloud radiative forcing, @CRF = @F @F (clear sky)
- What about longwave (LW) %F?

Simulation strategy

- 2-moment microphysics
- meteorology: base case used in de Roode et al. (2016) LES intercomparison (from NE Pacific trajectories)
- ambient aerosol: k=0.55, r_g=0.05 μ m, σ_{g} =1.2
- absorbing layer: k=0.2, r_g =0.12 µm, σ_g =1.3

Indirect plus semi-direct forcings

- Transition hastened and strengthened (Y15: transition delayed instead)
- Net negative radiative forcing DF (but positive ΔCRF, opposite of Y15)
 - SW: Twomey overcomes reduction in CF and LWP
 - LW: shallower PBL, reduced CF both increase upwelling LW

	DF (W m ⁻²)		
	SW	LW	TOTAL
Day 2	-0.5	-2.6	-3.1
Day 3	-1.2	-6.0	-7.2

Indirect forcings

Semi-direct forcings

		SW	LW
Cloud layer			
Twomey effect	N _c ↑	—	
Sedimentation♥	LWP♥	+	
	CF♥	+	_

		SW	LW
FT heating			
Inversion	CF♠	—	+
strength 🛧	Z _i ↓		—
PBL heating			
RH ↓	CF♥	+	
stabilization $ightheta$	Zi♥		_

Higher initial absorbing aerosol layer

- Still, transition hastened
- Stronger net negative forcing
 - SW: Twomey more dominant (greater CF)
 - LW: forcing reduced (greater CF), yet not to be ignored

	D <i>F</i> (W m⁻²)		
	SW	LW	TOTAL
Day 2	-11.2	-1.9	-13.1
Day 3	-5.0	-4.7	-9.7

A moisture perturbation aloft

- Adebiyi et al. (2015) report plume moister than environment by ~ 1 g/kg
- Relative to dry baseline: less entrainment drying
 → greater LWP and CF
- A thicker cloud layer has more to lose
 → greater reduction in LWP and CF
- SW: positive forcing (-ΔCF overcomes Twomey)
- LW: forcing slightly increased (greater -ΔCF)

→ weaker net negative forcing

	D <i>F</i> (W m ⁻²)		
	SW	LW	TOTAL
Day 2	3.0	-2.2	0.8
Day 3	2.8	-6.8	-4.0

Heavily drizzling baseline, dry aerosol plume

- Background sulfate: $150 \rightarrow 25/mg$
- Baseline: drizzle reduces diurnal cycle of LWP, CF and reduces entrainment
- Entrainment of aerosol inhibits drizzle, reversing those changes
- SW: stronger Twomey effect (much lower baseline)
- LW forcing reversed (deeper PBL)
- Transition still not delayed

	D <i>F</i> (W m⁻²)		
	SW	LW	TOTAL
Day 2	-52.0	6.3	-45.7
Day 3	-9.4	3.4	-6.0

Summary

- TOA indirect and semi-direct radiative forcings consistently –ive (greater than or comparable to +ive direct forcing)
- LW forcings not to be ignored (subtropical troposphere is dry): substantial and –ive, induced by reduction in CF and PBL height, reversed in drizzling case
- Higher aerosol layer enhances
 Presence of additional moisture reduces
 Presence of drizzle enhances
- Unlike Y15, here Sc \rightarrow TrCu transition never delayed: *why*?

Differences with Y15

- **Possible differences in microphysics treatment**: Omit cloud droplet sedimentation and fix relaxation time for diffusional growth in DHARMA
- \rightarrow Transition *delayed*
- Differences in set-up: Y15 used prognostic aerosol
- → Feedback of aerosol consumption and drizzle leads to catastrophic cloud breakup at end of control run
- Differences in the LES dynamics: Sc breakup much greater for DHARMA than SAM (used in Y15) in intercomparison of same SCT case (de Roode et al. 2016)

