ARM's First Value-Added Product Code Sprint:

a successful development acceleration paradigm

Karen Johnson, Pavlos Kollias, Eugene Clothiaux,, Tami Toto, Meng Wang, Mariko Oue, Katia Lamer, Michael Jensen, Scott Giangrande, Ed Luke, Yaosheng Chen

2017 ARM/ASR PI Meeting

a passion for discovery

What is a code sprint?

"A **sprint** is a get-together of people involved in a project to further a *focused development* of the project. Sprints typically last from one week up to three weeks."

Wikipedia

What is a code sprint?

"A **sprint** is a get-together of people involved in a project to further a *focused development* of the project. Sprints typically last from one week up to three weeks."

Wikipedia

And why did we try one?

ARM Value-Added Product (VAP) development has historically taken more time than we'd like and resources are limited.

Could intensive in-person collaboration between ARM developers and science leads make a difference?

Goals for ARM's VAP Code Sprint

Goals for ARM's VAP Code Sprint

Goals for ARM's VAP Code Sprint

Sprint Objectives

Convert 4 advanced SACR scientific codes into official ARM VAPs:

- SACRADV-VAD
- SACRADV-QVP
- SACRADV-3D3C
- Vertical profiles of horizontal wind speeds / directions
- Quasi-vertical profiles of polarimetric variables
- 3D Cartesian gridding, cloud cover, CFADs

Science Leads: Pavlos Kollias, Eugene Clothiaux, Mariko Oue, Katia Lamer **Developers:** Tami Toto, Meng Wang, Karen Johnson

Sprint nuts and bolts

June 23 – 30, 2016

Day 1:

- Assign science lead and developer for each VAP
- Split into groups to develop VAP Implementation Plans

Days 2-7

- Gather in a common room
- Code, asking questions, sharing solutions, consulting ADI* experts
- Discuss day's progress, plan next day
- Document each VAP's status, issues, next day's goals in code sprint 'diary'

Activities included:

- Refining input sources
- Designing output formats
- Revising implementation plans
- Converting coding language
- Optimizing code for speed
- Validating with test data

Brookhaven Science Associates

Sprint Results

Product	End-of-sprint Status	Post-sprint Tasks / Status
HSRHI input 0 2 3 5 8 11 14 0 2 3 5 8 11 14 14 17 20 5 8 11 14 14 17 20	 * Converted to Python * Implemented in ADI * Validated (1 test file) 	 * Many data issues handled * ARM standard format Completed, In Evaluation Poster by T. Toto
PPI input 9 24 SACR ADV - QVP OLI 20160522 Reflectivity 0 3 6 9 12 15 18 21	* Implemented in ADI	 * Optimized for speed * Many data issues handled * ARM standard format Completed, OLI in Evaluation
SACR ADV – 3D3C SGP20160522 Reflectivity 10 Wy U 10 0 3 6 9 12 15 18 21 24 Time (hrs)	Cloud Fraction: * Implemented in ADI * Validated results Gridding: * Language conversion begun	 * Converted and implemented in ADI * Validation issues handled * Data issues handled * Processing speed remains very slow Evaluation data soon, SGP

Brookhaven Science Associates

NATIONAL LABORATORY

What Worked? Development was jump-started!

Focused time!

Avoids email sidetracks, meetings, telecons, unrelated conversations

Science sponsor – Developer interaction very helpful

Speeds understanding of code and avoids wrong assumptions

Multiple developers together

Speeds resolution of technical issues

- Learning opportunities
 Broadens skill sets
- Building relationships within program Encouraging scientific ←→ technical communication
- VAPs available for evaluation!

The rest of the story... Post-sprint issues and tasks

Post-sprint remaining work / issues	 Resulting tasks
Need more than a 'case study'	Process data for Evaluation dataset
Data oddities, quirks	Analyze, add code to resolve
Code runs too slowly	Analyze, and recode for speed
Output must meet ARM standards	Modify output formats, reprocess
DQRs belatedly discovered	Modify codes to handle or omit data
Competing work priorities	Context switching
etc.	etc.

Development Timeline (months)

NATIONAL

LABOR

Brookhaven Science Associates

Development Timeline (months)

NATIONAL

LABORATORY

Brookhaven Science Associates

Development Timeline (months)

Brookhaven Science Associates

Development Timeline (months)

NATIONAL LABORATORY

Recommendations for future sprints

Thoughtful selection of sprint target products

- Mature codes (tested extensively, on diverse data)
- High impact potential
- Select within context of ARM VAP priorities
- Consider ease of creating official ARM VAP
- More pre-sprint work
 - Literature reviewed by developer
 - Implementation plan developed
 - Code previewed by developer
 - Input data quality reviewed

Science lead commitment, post-sprint

- Consult on issues if needed
- Review results prior to evaluation release

ARM VAP Code Sprint

Related Posters:

#115 SACRADV VAD#116 VAP Code Sprint

Lunchtime Tutorial:

Science Product Development through Community Collaboration and the Open Source Framework

Thanks! Questions or Comments?

Brookhaven Science Associates