Microphysics of Amazonian aerosol under background conditions and the impact from the urban pollution and biomass burning

Jian Wang, Meinrat O. Andreae, Paulo Artaxo, Henrique M. J. Barbosa, Joel Brito, Jennifer Comstock, Suzane S. de Sa, Chongai Kuang, Karla Longo, Luiz A. T. Machado, Antonio O. Manzi, Scot Martin, Fan Mei, Christopher Pöhlker, Mira Pöhlker, Beat Schmid, Arthur J. Sedlacek, John Shilling, Rodrigo A. F. Souza, Steven Springston, Ryan Thalman, Jason Tomlinson, David Walter, and GoAmazon 2014/5 team

Acknowledgements:

- Atmospheric System Research (ASR) program, Dept. of Energy
- Atmospheric Radiation Measurement (ARM) program, Dept. of Energy BROOKHAVEN
- Brazil Amazonas Research Foundation (FAPEAM)
- Brazil São Paulo Research Foundation (FAPESP)
- Brazil Financier of Studies and Projects (FINEP)
- German Max Planck Society (MPI)

a passion for discovery

Diurnal variation of particle size distribution under background condition in wet season

- Accumulation mode concentration decreases during evening and early morning, then increases until early afternoon.
- Aiken mode concentration starts increasing from later afternoon, peaks around early morning.

G-1 flight tracks

Brookhaven Science Associates

Impact of Manaus plume

Two sides of Manaus plume

South side of the plume:

- Originated from Industrial area
- High NO and NO₂
- Higher SO₄ mass concentration
- Smaller nucleation mode size

Diurnal variation of particle size distribution dry season vs. wet season

✓ Average background concentration (T0 site) increases by a factor of ~5 (from ~320 to ~ 1540).

Particle size distribution in dry season dominated by accumulation mode particles.
BROOKE

Manaus plume vs. local biomass burning

