New model developments of SOA formation in the aqueous phase

Chemical processes in cloud droplets vs aqueous particles

Barbara Ervens

CIRES, University of Colorado
NOAA, ESRL Chemical Sciences Division
SOA formation in the aqueous phase (aqSOA)

...of cloud droplets

Parameterization of SOA formation from glyoxal

...of aqueous (deliquesced) particles

- Derivation of individual rate constants based on lab studies
- Quantifying differences to cloud chemistry

First model studies

Comparison of cloud- and particle-SOA
Evidence in current models of ‘missing SOA’

Correlation of highly oxidized aerosol (O/C) and RH!

- ‘Traditional SOA’
 $0.02 < O/C < 0.8$

- aqSOA from glyoxal
 $1 < O/C < 2$

- aqSOA from methylglyoxal
 $0.4 < O/C < 1$
I. Cloud chemistry

Liquid water content ~ 0.1-1 g m⁻³
Lifetime of cloud droplet ~ minutes
Solute concentration µM - mM

CO₂

CH(OH)₂CH(OH)₂

K_{effH(T)}

K_H(T)

CHOCOOH

CHOCHO

OH

O/C

1

1-2

1.5-2

2

• Oxidation by OH
• Acid formation
• Formation and loss are pH dependent
• T and pH dependencies for all rate constants are known

Δ

Liquid water content
Lifetime of cloud droplet
Solute concentration

CO₂

CH(OH)₂CH(OH)₂

k₁(T) OH

(CHOCHO)

k₂(pH, T) OH

(COOH)₂

k₃(pH, T) OH

CO₂

Aqueous phase

Gas phase

µM - mM

CO₂

CH(OH)₂CH(OH)₂

K_{effH(T)}

K_H(T)

CHOCOOH

CHOCHO

OH

O/C

1

1-2

1.5-2

2

• Oxidation by OH
• Acid formation
• Formation and loss are pH dependent
• T and pH dependencies for all rate constants are known
Simplification of cloud chemistry: aqSOA formation from glyoxal

\[
\frac{d[SOA]}{dt} = k_{\text{overall}} \cdot [\text{Gly}]_{\text{gas}} \cdot [\text{OH}]_{\text{gas}} \cdot \text{LWC} \cdot \text{Factor}
\]

Factor:
- Deviation from thermodynamic equilibrium \([\text{Gly}]_{\text{aq}} = K_{H}^{\text{Gly}} \cdot [\text{Gly}]_{\text{gas}}\)
- Loss processes Oxalic acid/Oxalate + OH → CO₂
How to derive the empirical ‘factor’?

~100,000 box model simulations using ‘detailed cloud chemistry’

0.01 ppb ≤ [Gly]_{gas} ≤ 1 ppb
10^4 \text{ cm}^{-3} ≤ [\text{OH}]_{gas} ≤ 7 \cdot 10^6 \text{ cm}^{-3}
0.01 \text{ g m}^{-3} ≤ \text{LWC} ≤ 1.5 \text{ g m}^{-3}
275 \text{ K} ≤ T ≤ 300 \text{ K}
2 ≤ \text{pH} ≤ 6.5

\[\frac{d[\text{SOA}]}{dt} \text{ ng m}^{-3} \text{ s}^{-1} \]

\[k_{\text{overall}}(T) \cdot [\text{Gly}]_{\text{gas}} \cdot [\text{OH}]_{\text{gas}} \cdot \text{LWC} \]

\[k_{\text{aq}, \text{Gly}} \cdot K_H \cdot K_{\text{OH}} \]

\[k_{\text{OH}, \text{H}} \cdot K_H \]

\[\text{Net Production} = \text{Prod} - \text{Loss} \]
Resulting parameterization

Deviation from ‘ideal behavior’ (1:1) scales with

- glyoxal concentration
- temperature (K_H)
- pH (oxalate loss)

OH consumption $\Rightarrow [OH]_{aq \text{ (equil)}}$

$\pm \sim 30\%$

Factor = $a_1 + a_2 [y(pH) + A(pH) \cdot \exp(C(pH) \cdot [Gly]_{gas})] + a_3 \cdot T + a_4 [Gly]_{gas}$

Coefficients: $a_1, a_2, a_3, a_4, y(pH), A(pH), C(pH)$
II. SOA formation in aqueous particles

Complex mechanism:
- Surface and bulk processes
- Reversible and irreversible
- Photochemistry/dark chemistry
- Solute (activity) dependent
- Oligomerization (Products?)

LWC ~ $10^{-6} - 10^{-4}$ g m$^{-3}$
Particle lifetime ~ days
Solute concentration ~ M

Ervens and Volkamer, ACP, 2010
Quantifying chemical differences between cloud and particle chemistry

Laboratory studies
Glyoxal uptake on aqueous aerosol (different seed composition), in the presence of OH/hv

Volkamer et al., ACP, 2009

Model studies
Simulations of chamber conditions
Assumed ‘cloud chemistry’

\[\text{OH(aq)} + \text{Glyoxal(aq)} \rightarrow \text{SOA} \]

Cloud chemistry reaction scheme underestimates photochemical SOA formation by more than two orders of magnitude!

Additional photochemical process(es)

\[\text{Glyoxal} \rightarrow \text{SOA} \text{ with } 0.8 \text{ s}^{-1} < k_{\text{photochem}} < 7 \text{ s}^{-1} \]

can account for the discrepancy

\[k_{\text{photochem}} = f(\text{particle composition, hygroscopicity}) \]
Model simulations: Cloud vs particle SOA

Parcel model
Prescribed RH, liquid water content, temperature, pressure…

Model results: 2.5 h < time < 3.5 h

Cloud SOA
(oxalic, glyoxylic, glycolic, pyruvic acid):
- \(\sim 1 \mu g m^{-3} \) after 3 hours \(f(LWC, \text{time}) \)
- Sink: Oxidation and evaporation

Particle SOA
Oligomers, org. N-compounds
Steady increase (no sink – correct?)
- Several \(\mu g m^{-3} \) after a few hours

SOA formation in clouds and aqueous particles about equally efficient
Conclusions

- Aqueous phase chemistry is important for the SOA budget (mass, O/C)
- Cloud droplets/ aqueous particles = different aqueous phases

Parameterization of in-cloud aqSOA formation as $f([\text{Gly}]_{\text{gas}}, \text{pH}, T)$

Kinetic data for particle-aqSOA based on laboratory studies
- Application of process model (e.g., MCMA-2003; CARES; CalNex…)
- Lab studies to extent parameter space (pH, seed, species…)

SOA formation from glyoxal in cloud droplets and particles might yield similar amounts of highly oxidized aqSOA mass (O/C > 1)