

"Evaluating aspects of existing shallow cumulus cloudiness and mass flux parameterizations using MC3E observations"

Arunchandra S. Chandra

Pavlos Kollias

Bruce Albrecht

Department of Atmospheric and Oceanic Sciences McGill University Montreal, Canada

March 29, 2011

Cloud-base mass flux

M_u = Updraft mass flux σ_{up} = fractional updraft area W_{up} = bulk updraft velocity ρ = Air density **CF: Cloud Fraction**

Assuming Gaussian vertical velocity distribution at Chase

Parameterization of σ_{up} and W_{up}

Mass-Flux and Bulk upward velocity

Grant 2001)

$$m_b = 0.03 W_*$$
 $m_b = \frac{M}{\rho}, ms^{-1}$
 $w_* = convective_velocity_scale = \left((\frac{g}{\theta_v})\overline{w'\theta_{v0}}z_i\right)^{\frac{1}{3}}$

0.03=Constant based on LES studies over Ocean g=acceleration due to gravity

 $\frac{\Theta_{v} = virt}{w' \theta_{v0}}$ =Surface Buoyancy Flux

z_i=mixed layer depth

(Fletcher and Bretherton 2010; Bretherton et al., 2004)

Gaussian form for vertical velocity: (2 variables)

 $w_c = \sqrt{2a(CIN)}$ a=1;massflux coefficient

var *iance* =
$$\overline{w'^2} = k_f e_{avg}$$

$$e_{avg} = \frac{1}{2} (\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$$
 Avg. TKE in the SCL

 k_{i} =0.5; TKE partitioning between horizontal and vertical motions

Active Cloud Fraction at inversion

$$CF_{active,inv} = \int_{w_c}^{\infty} f(w) dw = \frac{1}{2} erfc(\frac{w_c}{2k_f e_{avg}})$$

Active Upward mass flux at inversion

$$M_{u,inv} = \overline{\rho}_{inv} \int_{w_c}^{\infty} wf(w) dw = \overline{\rho}_{inv} \sqrt{\frac{k_f e_{avg}}{2\pi}} \exp(\frac{-w^2}{2k_f e_{avg}})$$

Assuming M_{u, LCL}=M_{u,inv}

Gaussian vertical velocity distribution
 Can not resolve inversion layer
 CIN values are very small and calculations are very sensitive

Cloud radar measurements

> Corrected insect velocities: To study the turbulent structure of the Convective Boundary Layer from surface up to the cloud base

> Doppler velocities inside clouds: To study in-cloud turbulent structure during nonprecipitating conditions (assuming cloud droplets as passive tracers of air motion)

Is mass flux controlled by other factors ??

Possible factors

Cloud Life Cycle (Active/Passive)
Effect of transition layer (stable layer) ??
Inversion layer (wind shear, etc) ??

Some of the above issues (e.g., diurnal cycle, mass-flux characterization) are addressed partly using long-term cloud radar observations (Please see the poster)

Other issues are addressed using intensive MC3E dataset

Active + Passive clouds

Inversio	n layer
Transiti (Stable	i <mark>on Layer</mark> layer)
θ profile	
e.g. Yin and Albrecht 2000	

Composite diurnal variation of surface and shallow cumulus properties at SGP

MC3E (Mid-latitude Continental Convective Clouds Experiment) Campaign and New Instruments

Site: ARM Central Facility, Oklahoma (May-July 2011)

Science Focus: To understand different

components of convective simulation

Scanning WACR: 3d statistics of the cloud field, life cycle and LWC (liquid water content) measurements

Doppler LIDAR: Simultaneous vertical air velocity measurements from the surface up to the cloud base simultaeously

AERI (Atmospheric Emitted Radiance

Interferometer) measurements: Detailed measurements of water vapor plumes in the Convective Boundary Layer

Radio-sonde: 8 soundings per day at 6 near locations

Science added value of MC3E dataset v/s Long-term (13 years) dataset

Doppler lidar data

Verification of CBL turbulent statistics calculated from the Insect velocities
 Verification of the aspects of mass-flux parameterization (kf : empirical parameter (tke), gaussian velocity distribution)
 Subcloud-cloud coupling: mass flux, water vapour flux transport combined with

AERI water vapor data.

SWACR data

Detailed analysis of the in-cloud mass flux profiles and turbulent structure

Cloud-clear air interactions at cloud edges along with Doppler lidar data

Sounding data

Better characterization of diurnal evolution of the convective boundary layer (Daytime variation of transition layers, CIN daytime evolution, etc.)

Thank you !!

Questions & Suggestions ??

Scanning Strategy

